A Review and New Subjective Evaluation Experiment of Objective Metrics used to Evaluate Histogram Equalization-based Contrast Enhancement Techniques

Hasan Thabit Rashid Kurmasha*, Abbas Fadhil Alharan**

*(Computer Department, Kufa University/College of Education for Girls, Najaf, Iraq)
** (Computer Department, Kufa University/College of Education for Girls, Najaf, Iraq)

Abstract:

Histogram Equalization (HE) is a dominant contrast enhancement method mainly used in image processing expanse due to its efficacy in forming images with good contrast. Various versions of works' efforts in Global HE have been created over the years. Improperly, these methods' resilience to distortion remains questionable. This paper proposes to evaluate the selected two objective metrics which are the Absolute Mean Brightness Error (AMBE) and Entropy used for evaluation of image quality assessment algorithms (IQAs) based on GHE techniques. A review for these two objective metrics is made. It is found that the two IQAs fail to detect the occurrence of noise artifacts and gray level brightness saturation effectively. Also, an experiment was conducted by using subjective evaluation to assess the performance of these two objective metrics. The statistical results of the experiment reveal that they have poor correlation with Human Visual Perception (HVP) of distortions.

Keywords — Contrast enhancement; Histogram equalization; Human visual perception; Image quality assessment, Distortions, AMBE, Entropy.

I. INTRODUCTION

Histogram Equalization (HE) is one of the most widely used contrast enhancement techniques. However, it could sometimes produce unnecessary enhancement which may lead to three visually annoying types of distortions such as noise artifacts, brightness saturation and excessive brightness change [1], as shown in Fig.1.

Over years, many researchers proposed different methods to improve what the author refers to before and after as the modification works of GHE such as:

1) Brightness Preserving Bi-HE (BBHE) [2].
2) Multi-peak Histogram Equalization [3].
3) Equal Area Dualistic Sub-Image Histogram Equalization (DSIHE) [4].
4) Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEHE) [5].
5) Brightness Preserving Histogram Equalization with Maximum Entropy (BPHEME) [6].
6) Brightness Preserving Dynamic Histogram Equalization (BPDHE) [7].
7) Multi-Histogram Equalization Methods for Contrast Enhancement and Brightness Preserving (Multi-HE) [8].
8) Recursively Separated and Weighted Histogram Equalization for Brightness Preserving and Contrast Enhancement (RSWHE) [9].
9) Bi-Histogram Equalization with a Plateau Limit for Digital Image Enhancement (BHEPL) [10].
11) Fusion Framework of Histogram Equalization and Laplacian Pyramid (FFHELP) [12].
12) Image Contrast Enhancement using Bi-Histogram Equalization with Neighbourhood Metrics (BHENM) [13].
Despite that the above GHE-based methods were claimed to have solved the distortion problems, a recent study by [1] reveals that the proposed modifications still fail to avoid the presence of undesirable distortions judging from the resultant output images in Fig. 2 ((a), (b), (c) and (d)). Notice the red arrow pointing at the location of noise artifacts (there could be more than one location that shows noise artifacts in the output images).

The goal of image quality assessment algorithm (IQA) is to automatically assess the quality of images. All previous works mentioned above were depend on and evaluated by Absolute Mean Brightness Error (AMBE) and Entropy which are the two popular image quality assessment algorithms (IQAs) for evaluation of Global Histogram Equalization (GHE) based contrast enhancement techniques as shown in Table 1. A recent study held by [14] revealed that the two IQAs have poor correlation with human visual perception (HVP) of distortions.

In this paper, a new subjective experiment to review the existing image quality assessment algorithms (IQAs) used for evaluation of GHE-based contrast enhancement methods. In Section II, the existing IQAs are reviewed and their restrictions are discussed. In Section III the details of the experiment to evaluate the IQAs’ correlation with subjective human visual perception (HVP) of distortions is expanded. Section VI discusses the results and findings from the experiment and section V provides the conclusion and recommendations for future work.

<table>
<thead>
<tr>
<th>Method</th>
<th>Objective Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBHE</td>
<td>AMBE</td>
</tr>
<tr>
<td>Multi-peak</td>
<td>AMBE</td>
</tr>
<tr>
<td>DSIHE</td>
<td>AMBE Entropy Background brightness</td>
</tr>
<tr>
<td>MMBEBHE</td>
<td>AMBE</td>
</tr>
<tr>
<td>BPHEME</td>
<td>AMBE Entropy</td>
</tr>
</tbody>
</table>
II. THE WEAKNESSES OF OBJECTIVE METRICS

This section specifies that both AMBE and Entropy are poor noise artifacts and saturation indicator. Hence, all the previous evaluation methods that highlight on these two IQAs may be insufficient.

A. AMBE WEAKNESS

AMBE is the absolute difference between mean input and output image brightness and basically can be defined as \(AMBE = |E(X) - E(Y)| \), where \(X \) and \(Y \) denote the input and output image respectively, and \(E(\cdot) \) denotes the expected value, i.e. the statistical mean. According to [1], AMBE is designed to detect the excessive brightness changed distortion. Hence, it does not take noise artifacts and brightness saturation distortions into account. Therefore using AMBE to detect other types of distortions could be misleading as shown in Fig.3 and Fig.4. In current practice, lower AMBE infers that original brightness is better preserved and should result in a better quality output.

Based on Fig.4, Caps image with less AMBE (14.02) obviously show the noise artifacts distortion in the background and brightness saturation in the image while it is not seen in Fig.3 with high AMBE (37.31). This result verifies that brightness preserving method is not resilient to noise artifacts and saturation.

B. ENTROPY WEAKNESS

Entropy is a measure of the uncertainty associated with a random variable (Shannon Entropy) as (1).

\[
H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)
\]

Where \(X \) is an image, \(x_i \) is the gray level \(I \), \(p(x_i) \) : probability of gray level \(I \), \(b \) : units, (in this case, the unit is bit, so \(b = 2 \)), and \(n \) : number of gray levels. It counts in the sense of an expected value, the information contained in an information source (the image), usually in units such as bits. Hypothetically, higher entropy means more information is available from the information source such as an image. Therefore, an image having higher entropy is considered to have a better quality. Since the global gray levels have relatively low probability density, GHE tends to combine them and results in decreasing of entropy although such action tends to increase the contrast of an image. In current practice, lower entropy infers the opportunity of gray level saturation [15]. Notice that the adapted image of Parrots with lower entropy (5.72) in Fig.6 shows a better contrast with better quality as compared to Fig.5 with higher entropy (5.74).
III. EVALUATION METHODOLOGY

A. Experimental Design

The experimental setup is Double Stimulus Continuous Quality Scale (DSCQS) / Degradation Category Rating (DCR) method when reference and distorted images are shown. A total of 1032 ‘ground truth’ human observer scores MOS have been successfully gathered. The scores were then used to evaluate the performance of the tow IQAs. All statistical functions and processes applied for collected data were made in Matlab (2015b). Human observer needs to rate the level of impairment for each distorted image as compared to the reference as illustrated in Table 2.

<table>
<thead>
<tr>
<th>DCR Scale</th>
<th>Equivalent Scoring Scale</th>
<th>Level of Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 – 20</td>
<td>Very Annoying</td>
</tr>
<tr>
<td>2</td>
<td>21 – 40</td>
<td>Annoying</td>
</tr>
<tr>
<td>3</td>
<td>41 – 60</td>
<td>Slightly Annoying</td>
</tr>
<tr>
<td>4</td>
<td>61 – 80</td>
<td>Perceptible but not annoying</td>
</tr>
<tr>
<td>5</td>
<td>81 – 100</td>
<td>Imperceptible</td>
</tr>
</tbody>
</table>

B. Test Images

A total of 43 test images derived from 9 source images were involved in the experiment. The source images used embraces pictures of natural scenes, animals, man-made objects, wide-angle shots as well as images with distinct background.

C. Pre-processing of Source Images

The pre-processing steps were designed based on the guidelines proposed by [16]. The first step is using `imwrite` function to JPEG compress the original images at quality (Q=50). This is to emulate real life photo where images are distorted during compression. Next, by using `imadjust` function with `[low-out high-out] = [0.2 0.8]`. The images will be contrast-reduced which will leave room for contrast enhancement process.

D. Generating Test Images

In this phase, each image will be processed using a variant of GHE proposed by [16] and [17] called Scalable Global Histogram Equalization with Selection Enhancement (SGHESE) that interactively allows user to regulate the degree of contrast enhancement. In this experiment, test images with various degree of annoyance were generated from source images via SGHESE.

E. Viewing Conditions

This experiment was conducted in Computer Department / Faculty of Education for Woman Image Processing lab fitting in 8 human observers in three times and is fully air-conditioned and comfortable with normal indoor lighting level. A total of 16 laptop core i5 computers were used that supports 2 separate 15” LED, native resolution at 1024 x 768 pixels screen, refresh rate at 60 Hz, viewing distance at 60cm.
F. Human Observers

In this experiment, a total of 24 human observers participated in evaluating the quality of the test images. They were female ages 19 and above. They were inexperienced in assessing image quality and distortions as well as free from vision problems and all conditions are under the recommendations of VQEG [18].

G. Outlier Detection and Subject Rejection

This procedure needs to be carried out on the raw scores. A data point that is far outside the norm for a variable or population can be defined as outlier. It is often caused by human error such as errors in data collection, recording or entry. If the raw score for an image is outside an interval of 2.33 standard deviations about the mean score for that image, then it will be measured as an outlier. In the same time, if there is one subject that has more than 6 scores as outliers, all of his scores will be rejected. In this experiment, no subject is considered as rejected subject score.

H. Normalization of Scores

In continuous, the scores of the remaining subjects will be normalized using Z-scores before one can compute Mean Opinion Score (MOS) and then, all scores of all rankings will be within the same range. The Z-scores for ith subject and jth image can define as follow.

\[Z_{ij} = \frac{(S_{ij} - \bar{S}_j)}{\sigma_i} \]

(2)

Where \(S_{ij} \) is the raw score for ith subject and jth image, and \(\bar{S}_j \) is the average of all the scores rated by subject i, then to calculate the MOS for jth image, the previously computed Z-scores will be averaged across subjects can defined as follow.

\[MOS_j = \frac{1}{S} \sum_{i=1}^{S} Z_{ij} \]

(3)

S represents the total number of subjects after subject rejection.

IV. RESULTS AND DISCUSSION

A. Performance Metrics

The performance metrics were chosen based on the recommendation from VQEG [18].

- **Pearson Correlation Coefficient (PCC) and Root Mean Squared Error (RMSE):** it used to measure the ability to predict the subjective quality score with low error (Prediction Accuracy).
- **Spearman Rank Order Correlation Coefficient (SROCC):** it used to measure the degree to which the IQA’s prediction agrees with the relative magnitudes of the subjective quality rating (Prediction Monotonicity).
- **Outlier Ratio (OR):** it used to measure the degree to which the metric maintains prediction accuracy over different types of images and not to fail excessively for a subset of images (ratio of outlier to total scores) (Prediction Consistency).

The Interpretation of Correlation Values for (PCC, RMSE and SROCC) as shown in Table 3.

<table>
<thead>
<tr>
<th>Value of Correlation</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 – 0.40</td>
<td>Poor</td>
</tr>
<tr>
<td>0.41 – 0.75</td>
<td>Fair</td>
</tr>
<tr>
<td>0.76 – 0.85</td>
<td>Good</td>
</tr>
<tr>
<td>0.86 – 1.00</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

The evaluation was done using MOS after non-linear regression with five-parameter logistic function (a logistic function with an added linear term, constrained to be monotonic) [19] as defined by (4).

\[(x) = b_1 \left(1 - \frac{1}{2} + \frac{1}{e^{b_2 (x - b_3)}} \right) + b_4 x + b_5 \]

(4)

This nonlinearity was applied to the MOS or its logarithm, which ever gave a better fit for all data.

B. Discussion

Based on the interpretation of correlation values in Table 3 and the results showed in Table 4, then can indication that:
In terms of (PCC and RMSE): AMBE has poor correlation while Entropy has slightly fear correlation with HVP.

In terms of (SROCC): AMBE and Entropy have poor correlation with HVP.

The difference between AMBE and Entropy in PCC, RMSE and OR could be marginal.

<table>
<thead>
<tr>
<th>Objective Metrics</th>
<th>Pearson CC</th>
<th>RMSE</th>
<th>SROCC</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBE</td>
<td>0.3053</td>
<td>0.1092</td>
<td>0.0210</td>
<td>0.3261</td>
</tr>
<tr>
<td>Entropy</td>
<td>0.4462</td>
<td>0.1346</td>
<td>0.3649</td>
<td>0.2483</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS

Two most popular objective metrics (AMBE and Entropy) used for evaluation of GHE-based contrast enhancement techniques have been reviewed and their weaknesses have been pointed. A DCR evaluation experiment has been conducted to measure these IQAs performance in term of their correlation with HVP of distortions. The results showed that AMBE and Entropy have poor correlation with HVP. They cannot detect the presence of noise artifacts and gray level saturation effectively. It is essential for further research to have reliable objective metrics that can simulate human vision perception and develop models for automatic GHE-based contrast enhancement methods which can be used for consumer electronics.

REFERENCES