Detecting Malware and Searching Rank Fraudulent Behavior In Google Play
Mr.S.Jagadeesan,M.Sc, MCA., M.Phil., ME[CSE].,(Assistant professor, Department of Computer Application, Nandha Engineering College/Anna University, Erode-52)
B.VishnuVarthini ,MCA.,(Department of Computer Application, Nandha Engineering College/Anna University, Erode-52)

Abstract:
Fraudulent behaviors in Google Play, the most popular Android app market, fuel search rank abuse and malware proliferation. To identify malware, previous work has focused on app executable and permission analysis. In this paper, we introduce FairPlay, a novel system that discovers and leverages traces left behind by fraudsters, to detect both malware and apps subjected to search rank fraud. FairPlay correlates review activities and uniquely combines detected review relations with linguistic and behavioral signals gleaned from Google Play app data (87 K apps, 2.9 M reviews, and 2.4M reviewers, collected over half a year), in order to identify suspicious apps. FairPlay achieves over 95 percent accuracy in classifying gold standard datasets of malware, fraudulent and legitimate apps. We show that 75 percent of the identified malware apps engage in search rank fraud. FairPlay discovers hundreds of fraudulent apps that currently evade Google Bouncer's detection technology. FairPlay also helped the discovery of more than 1,000 reviews, reported for 193 apps, which reveal a new type of “coercive” review campaign: users are harassed into writing positive reviews, and install and review other apps.

Keywords — Android market, search rank fraud, malware detection.

I. INTRODUCTION
The commercial success of Android app markets such as Google Play [1] and the incentive model they offer to popular apps, make them appealing targets for fraudulent and malicious behaviors. Some fraudulent developers deceptively boost the search rank and popularity of their apps (e.g., through fake reviews and bogus installation counts) [2], while malicious developers use app markets as a launch pad for their malware [3], [4], [5], [6]. The motivation for such behaviors is impact: app popularity surges translate into financial benefits and expedited malware proliferation. Fraudulent developers frequently exploit crowdsourcing sites (e.g., Freelancer [7], Fiverr [8], BestAppPromotion [9]) to hire teams of willing workers to commit fraud collectively, emulating realistic, spontaneous activities from unrelated people (i.e., "crowdturfing").

In this paper, we seek to identify both malware and search rank fraud subjects in Google Play. Fig. 1. An “install job” posting from Freelancer [7], asking for 2,000 installs within 3 days (in orange), in an organized way that includes expertise verifications and provides secrecy assurances (in blue). Text enlarged for easier reading, an efficient algorithm to identify temporally con-strained, co-review pseudo-cliques—formed by reviewers with substantially overlapping co-reviewing activities across short time windows.We use temporal dimensions of review post times to identify suspicious reviews spikes received by apps; we show that to compensate for a negative review, for an app that has rating R, a fraudster needs to post at least R \times 5 \times \frac{1}{R} positive reviews. We also identify apps with “unbalanced” review, rating and install counts, as successful. For instance, Google Play uses the Bouncer system [11] to remove malware. However, out of the 7,756 Google Play apps we analyzed using VirusTotal [12], 12 percent (948)
well as apps with permission request ramps. We use linguistic and behavioral information to (i) detect genuine reviews from which we then (ii) extract user-identified fraud and malware indicators.

Tools to Collect and Process Google Play Data. We have developed GPCrawler, a tool to automatically collect data published by Google Play for apps, users and reviews, as well as GPad, a tool to download apks of free apps and scan them for malware using VirusTotal.

Novel Longitudinal and Gold Standard Datasets. We contributed a longitudinal dataset of 87,223 freshly posted Google Play apps (along with their 2.9 M reviews, from 2.3 M reviewers) collected between October 2014 and May 2015. We have leveraged search rank fraud expert contacts in Freelancer [7], anti-virus tools and manual verifications to collect gold standard datasets of hundreds of fraudulent, malware and benign apps [x 3]. We have published these datasets on the project website [20].

II. RELATED WORK AND MOTIVATION

System Model. We focus on the Android app market ecosystem of Google Play. The participants, consisting of users and developers, have Google accounts. Developers create and upload apps, that consist of executables (i.e., "apks"), a set of required permissions, and a description. The app market publishes this information, along with the app’s received reviews, ratings, aggregate rating (over both reviews and ratings), install count range (predefined buckets, e.g., 50-100, 100-500), size, version number, price, time of last update, and a list of “similar” apps.

Each review consists of a star rating ranging between 1-5 stars, and some text. The text is optional and consists of a title and a description. Google Play limits the number of reviews displayed for an app to 4,000. Fig. 2 illustrates the participants in Google Play and their relations.

Adversarial Model. We consider not only malicious developers, who upload malware, but also rational fraudulent developers. Fraudulent developers attempt to tamper with the search rank of their apps, e.g., by recruiting fraud experts in crowdsourcing sites to write reviews, post ratings, and create bogus installs. While Google keeps secret the criteria used to rank apps, the reviews, ratings and install counts are known to play a fundamental part (see e.g., [21]). To review or rate an app, a user needs to have a Google account, register a mobile device with that account, and install the app on the device. This process complicates the job of fraudsters, who are thus more likely to reuse accounts across jobs. The reason for search rank fraud attacks is impact. Apps that rank higher in search results, tend to receive more installs. This is beneficial both for fraudulent developers, who increase their revenue, and malicious developers, who increase the impact of their malware.

2.1 Android Malware Detection

Zhou and Jiang [19] collected and characterized 1,200 Android malware samples, and reported the ability of malware to quickly evolve and bypass the detection mechanisms of anti-virus tools.

Burguera et al. [13] used crowdsourcing to collect system call traces from real users, then used a “partitional” clustering algorithm to classify benign and malicious apps. Shabtai et al. [14] extracted features from monitored apps (e.g., CPU consumption, packets sent, running processes) and used machine learning to identify malicious apps. Grace et al. [15] used static analysis to efficiently identify high and medium risk apps.

Previous work has also used app permissions to pinpoint malware [16], [17], [18]. Sarma et al. [16] use risk signals extracted from app permissions, e.g., rare critical permissions (RCP) and rare pairs of critical permissions (RPCP), to train SVM and inform users of the risks versus benefits tradeoffs of apps. In Section 5.3 we show that FairPlay significantly improves on the performance achieved by Sarma et al. [16].

Peng et al. [17] propose a score to measure the risk of apps, based on probabilistic generative models such as Naive Bayes. Yerima et al. [18] also use features extracted from app permissions, API calls and commands extracted from the app executables.

Sahs and Khan [22] used features extracted from app permissions and control flow graphs to train an
SVM classifier on 2,000 benign and less than 100 malicious apps. Sanz et al. [23] rely strictly on permissions as sources of features for several machine learning tools. They use a dataset of around 300 legitimate and 300 malware apps.

Google has deployed Bouncer, a framework that monitors published apps to detect and remove malware. Oberheide and Miller [11] have analyzed and revealed details of Bouncer (e.g., based in QEMU, using both static and dynamic analysis). Bouncer is not sufficient—our results show that 948 apps out of 7,756 apps that we downloaded from Google Play are detected as suspicious by at least 1 anti-virus tool. In addition, FairPlay detected suspicious behavior for apps that were not removed by Bouncer during a more than 6 months long interval.

Instead of analyzing app executables, FairPlay employs a relational, linguistic and behavioral approach based on longitudinal app data. FairPlay’s use of app permissions differs from existing work through its focus on the temporal dimension, e.g., changes in the number of requested permissions, in particular the “dangerous” ones. We observe that FairPlay identifies and exploits a new relationship between malware and search rank fraud.

2.2 Graph Based Opinion Spam Detection

Graph based approaches have been proposed to tackle opinion spam [24], [25]. Ye and Akoglu [24] quantify the chance of a product to be a spam campaign target, then cluster spammers on a 2-hop subgraph induced by the products with the highest chance values. Akoglu et al. [25] frame fraud detection as a signed network classification problem and classify users and products, that form a bipartite network, using a propagation-based algorithm.

FairPlay’s relational approach differs as it identifies apps reviewed in a contiguous time interval, by groups of users with a history of reviewing apps in common. FairPlay combines the results of this approach with behavioral and linguistic clues, extracted from longitudinal app data, to detect both search rank fraud and malware apps. We emphasize that search rank fraud goes beyond opinion spam, as it implies fabricating not only reviews, but also user app install events and ratings.

3 THE DATA

We have collected longitudinal data from 87K+ newly released apps over more than 6 months, and identified gold standard data. In the following, we briefly describe the tools we developed, then detail the data collection effort and the resulting datasets.

Data Collection Tools. We have developed the Google Play Crawler (GPCrawler) tool, to automatically collect data published by Google Play for apps, users and reviews. Google Play prevents scripts from scrolling down a user page. Thus, to collect the ids of more than 20 apps reviewed by a user. To overcome this limitation, we developed a Python script and a Firefox add-on. Given a user id, the script opens the user page in Firefox. When the script loads the page, the add-on becomes active. The add-on interacts with Google Play pages using content scripts (Browser specific components that let us access the browsers native API) and port objects for message communication. The add-on displays a “scroll down” button that enables the script to scroll down to the bottom of the page. The script then uses a DOMParser to extract the content displayed in various formats by Google Play. It then sends this content over IPC to the add-on. The add-on stores it, using Mozilla XPCOM components, in a sandboxed environment of local storage in a temporary file. The script then extracts the list of apps rated or reviewed by the user.

We have also developed the Google Play App Downloader (GPad), a Java tool to automatically download apks of free apps on a PC, using the open-source Android Market API[26]. GPad takes as input a list of free app ids, a Gmail account and password, and a GSF id. GPad creates a new market session for the “androidsecure” service and logs in. GPad sets parameters for the session context (e.g., mobile device Android SDK version, mobile operator, country), then issues a GetAssetRequest for each app identifier in the input list. GPad introduces a 10s delay between requests. The result contains the url for the app; GPad uses this url to retrieve and store the app’s binary stream into a local file. After collecting the binaries of the apps on the list, GPad scans each app apk using VirusTotal [12], an online malware detector provider, to find
out the number of anti-malware tools (out of 57: AVG, McAfee, Symantec, Kaspersky, Malwarebytes, F-Secure, etc.) that identify the apk as suspicious. We used 4 servers (PowerEdge R620, Intel Xeon E-26XX v2 CPUs) to collect our datasets, which we describe next.

3.1 Longitudinal App Data

In order to detect suspicious changes that occur early in the lifetime of apps, we used the “New Releases” link to identify apps with a short history on Google Play. Our interest in newly released apps stems from our analysis of search rank fraud jobs posted on crowdsourcing sites.

Revealed that app developers often recruit fraudsters early after uploading their apps on Google Play. Their intent is likely to create the illusion of an up-and-coming app, that may then snowball with interest from real users. By monitoring new apps, we aim to capture in real-time the moments when such search rank fraud campaigns begin.

We approximate the first upload date of an app using the day of its first review. We have started collecting new releases in July 2014 and by October 2014 we had a set of 87,223 apps, whose first upload time was under 40 days prior to our first collection time, when they had at most 100 reviews.

(Generalization). Fig. 4 shows the average rating distribution of the fresh apps. Most apps have at least a 3.5 rating aggregate rating, with few apps between 1 and 2.5 stars. However, we observe a spike at more than 8,000 apps with less than 1 star. We have collected longitudinal data from these 87,223 apps between October 24, 2014 and May 5, 2015. Specifically, for each app we captured “snapshots” of its Google Play metadata, twice a week. An app snapshot consists of values for all its time varying variables, e.g., the reviews, the rating and install counts, and the set of requested permissions (see Section 2 for the complete list). For each of the 2,850,705 reviews we have collected from the 87,223 apps, we recorded the reviewer’s name and id (2,380,708 unique ids), date of review, review title, text, and rating.

This app monitoring process enables us to extract a suite of unique features, that include review, install and permission changes. In particular, we note that this approach enables us to overcome the Google Play limit of 4,000 displayed reviews per app: each snapshot will capture only the reviews posted after the previous snapshot.

3.2 Gold Standard Data

Malware Apps. We used GPad (see Section 3) to collect the apks of 7,756 randomly selected apps from the longitudinal set (see Section 3.1). Fig. 6 shows the distribution of flags raised by VirusTotal, for the 7,756 apks. None of these apps had been filtered by Bouncer [11]. From the 523 apps that were flagged by at least 3 tools, we selected those that had at least 10 reviews, to form our “malware app” dataset, for a total of 212 apps. We collected all the 8,255 reviews of these apps.

Fraudulent Apps. We used contacts established among Freelancer [7]’s search rank fraud community, to obtain the identities of 15 Google Play accounts that were used to write fraudulent reviews for 201 unique apps. We call the 15 accounts “seed fraud accounts” and the 201 apps “seed fraud apps”. Fig. 5 shows the graph formed by the review habits of the 15 seed accounts: nodes are accounts, edges connect accounts who reviewed apps in common, and edge weights represent the number of such commonly reviewed apps. The 15 seed fraud accounts form a suspicious clique. This
shows that worker controlled accounts are used to review many apps in common: the weights of the edges between the seed fraud accounts range between 60 and 217.

Fraudulent Reviews. We have collected all the 53,625 reviews received by the 201 seed fraud apps. The 15 seed fraud accounts were responsible for 1,969 of these reviews. We used the 53,625 reviews to identify 188 accounts, such that each account was used to review at least 10 of the

Fig. 6. Apks detected as suspicious (y axis) by multiple anti-virus tools (x axis), through VirusTotal [12], from a set of 7,756 downloaded apks.

201 seed fraud apps (for a total of 6,488 reviews). We call these, guilt by association (GbA) accounts. Fig. 5 shows the co-review edges between these GbA accounts (in orange) and the seed fraud accounts: the GbA accounts are suspiciously well connected to the seed fraud accounts, with the weights of their edges to the seed accounts ranging between 30 and 302.

To reduce feature duplication, we have used the 1,969 fraudulent reviews written by the 15 seed accounts and the 6,488 fraudulent reviews written by the 188 GbA accounts for the 201 seed fraud apps, to extract a balanced set of fraudulent reviews. Specifically, from this set of 8,457 (¼ 1; 969 + 6; 488) reviews, we have collected 2 reviews from each of the 203 (¼ 188 + 15) suspicious user accounts. Thus, the gold standard dataset of fraudulent reviews consists of 406 reviews.

The reason for collecting a small number of reviews from each fraudster is to reduce feature duplication: many of the features we use to classify a review are extracted from the user who wrote the review (see Table 2).

Benign Apps. We have selected 925 candidate apps from the longitudinal app set, that have been developed by Google designated “top developers”. We have used GPad to filter out those flagged by VirusTotal. We have manually investigated 601 of the remaining apps, and selected a set of 200 apps that (i) have more than 10 reviews and (ii) were developed by reputable media outlets (e.g., NBC, PBS) or have an associated business model (e.g., fitness trackers). We have also collected the 32,022 reviews of these apps.

FAIRPLAY: PROPOSED SOLUTION

We now introduce FairPlay, a system to automatically detect malicious and fraudulent apps. Fig. 7. FairPlay system architecture. The CoReG module identifies suspicious, time related co-review behaviors. The RF module uses linguistic tools to detect suspicious behaviors reported by genuine reviews. The IRR module uses behavioral information to detect suspicious apps. The JH module identifies permission ramps to pinpoint possible Jekyll-Hyde app transitions.

4.1 FairPlay Overview

FairPlay organizes the analysis of longitudinal app data into the following 4 modules, illustrated in Fig. 7. The Co-Review Graph (CoReG) module identifies apps reviewed in a contiguous time window by groups of users with significantly overlapping review histories. The Review Feedback (RF) module exploits feedback left by genuine reviewers, while the Inter Review Relation (IRR) module leverages relations between reviews, ratings and install counts. The Jekyll-Hyde (JH) module monitors app permissions, with a focus on dangerous ones, to identify apps that convert from benign to malware. Each module produces several features that are used to train an app classifier. FairPlay also uses general features such as the app’s average rating, total number of reviews, ratings and installs, for a total of 28 features. Table 1

TABLE 1
FairPlay’s Most Important Features, Organized by Their Extracting Module
4.2 The Co-Review Graph (CoReG) Module

This module exploits the observation that fraudsters who control many accounts will re-use them across multiple jobs. Its goal is then to detect sub-sets of an app’s reviewers that have performed significant common review activities in the past. In the following, we describe the co-review graph concept, formally present the weighted maximal clique enumeration problem, then introduce an efficient heuristic that leverages natural limitations in the behaviors of fraudsters.

Co-Review Graphs. Let the co-review graph of an app, see Fig. 8, be a graph where nodes correspond to user accounts who reviewed the app, and undirected edges have a weight that indicates the number of apps reviewed in common by the edge’s endpoint users. Fig. 16a shows the co-review clique of one of the seed fraud apps (see Section 3.2). The co-review graph concept naturally identifies user accounts with significant past review activities.

The Weighted Maximal Clique Enumeration Problem. Let $G \subseteq V; E \subseteq V \times V$ be a graph, where V denotes the sets of vertices of the graph, and E denotes the set of edges. Let w be a weight function, $w : E \rightarrow \mathbb{R}$ that assigns a weight to each edge of G. Given a vertex sub-set $U \subseteq V$, we use $G[U]$ to denote the sub-graph of G induced by U. A vertex sub-set U is called a clique if any two vertices in U are connected by an edge in E. We say that U is a maximal clique if no other clique of G contains U. The weighted maximal clique enumeration problem takes as input a graph G and returns the set of maximal cliques of G.

Maximal clique enumeration algorithms such as [27], [28] applied to co-review graphs are not ideal to solve the problem of identifying sub-sets of an app’s reviewers with significant past common reviews. First, fraudsters may not consistently use (or may even purposefully avoid using) all their accounts across all fraud jobs that they perform. In addition, Google Play provides incomplete information (up to 4,000 reviews per app, may also detect and filter fraud). Since edge information may be incomplete, original cliques may now also be incomplete. To address this problem, we “relax” the clique requirement and focus instead on pseudo-cliques:

The Weighted Pseudo-Clique Enumeration Problem. For a graph $G \subseteq V; E \subseteq V \times V$ and a threshold value u, we say that a vertex sub-set U (and its induced sub-graph $G[U]$) is a pseudo-clique of G if its weighted clique density is $\frac{1}{u} \sum_{e \in E} w(e)$ [29].
density r exceeds $\frac{2n}{\delta}$

Algorithm 1. PCF Algorithm Pseudo-Code

Input: days, an array of daily reviews, and u, the weighted threshold density

Output: allCliques, set of all detected pseudo-cliques

1. for $d := 0$ to $< \text{days.size()}; d++$
2. Graph $PC := \text{new Graph;}$
3. bestNearClique(PC, days[d]);
4. $c := 1; n := PC.size();$
5. for $nd := d+1; d < \text{days.size()} \& c = 1; d++$
6. bestNearClique(PC, days[nd]);
7. $c := (PC.size() > n); endfor$
8. if (PC.size() > 2)
9. allCliques := allCliques.add(PC); fi endfor
10. return

11. function bestNearClique(Graph PC, Set revs)
12. if (PC.size() = 0)
13. for root := 0; root < revs.size(); root++
14. Graph candClique := new Graph();
15. candClique.addNode (revs[root].getUser());
16. do candNode := getMaxDensityGain(revs);
17. if (density(candClique [{candNode}) $u))
18. candClique.addNode(candNode); fi
19. while (candNode != null); endfor
20. else if (PC.size() > 0)
21. do candNode := getMaxDensityGain(revs);
22. endfor
23. else if (PC.size() > 0)
24. do candNode := getMaxDensityGain(revs);
25. if (density(candClique [candNode) $u))
26. PC.addNode(candNode); fi
27. while (candNode != null); endfor
28. return

For each day when the app has received a review (line 1), PCF finds the day’s most promising pseudo-clique (lines 3 and 12 22): start with each review, then greedily add other reviews to a candidate pseudo-clique; keep the pseudo clique (of the day) with the highest density. With that “work-in-progress” pseudo-clique, move on to the next day (line 5): greedily add other reviews while the weighted density of the new pseudo-clique equals or exceeds u (lines 6 and 23 27). When no new nodes have been added to the work-in-prog-ress pseudo-clique (line 8), we add the pseudo-clique to the output (line 9), then move to the next day (line 1). The greedy choice (getMaxDensityGain, not depicted in Algorithm 1)

For each day when the app has received a review (line 1), PCF finds the day’s most promising pseudo-clique (lines 3 and 12 22): start with each review, then greedily add other reviews to a candidate pseudo-clique; keep the pseudo clique (of the day) with the highest density. With that “work-in-progress” pseudo-clique, move on to the next day (line 5): greedily add other reviews while the weighted density of the new pseudo-clique equals or exceeds u (lines 6 and 23 27). When no new nodes have been added to the work-in-prog-ress pseudo-clique (line 8), we add the pseudo-clique to the output (line 9), then move to the next day (line 1). The greedy choice (getMaxDensityGain, not depicted in Algorithm 1)

1. r is thus the average weight of the graph’s edges, normalized by the total number of edges of a perfect clique of size n.

TABLE 2
Features Used to Classify Review R Written by User U for App A

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_R</td>
<td>The rating of R</td>
</tr>
<tr>
<td>$\mathcal{L} \Omega R$</td>
<td>The length of R</td>
</tr>
<tr>
<td>$% \text{pos} R$</td>
<td>Percentage of positive statements in R</td>
</tr>
<tr>
<td>$% \text{neg} R$</td>
<td>Percentage of negative statements in R</td>
</tr>
<tr>
<td>$n r \Omega U$</td>
<td>The number of reviews written by U</td>
</tr>
<tr>
<td>$p % r R$</td>
<td>Percentile of r_R among all reviews of U</td>
</tr>
<tr>
<td>$\text{Exp}_U \Delta A$</td>
<td>The expertise of U for app A</td>
</tr>
<tr>
<td>$B_U \Delta A$</td>
<td>The bias of U for A</td>
</tr>
<tr>
<td>$\text{Paid} \Omega U$</td>
<td>The money spent by U to buy apps</td>
</tr>
<tr>
<td>$\text{Rated} \Omega U$</td>
<td>Number of apps rated by U</td>
</tr>
<tr>
<td>$\text{PlusOne} \Omega U$</td>
<td>Number of apps +1’d by U</td>
</tr>
<tr>
<td>$n: \text{flwrs} \Omega U$</td>
<td>Number of followers of U in Google+</td>
</tr>
</tbody>
</table>

Picks the review not yet in the work-in-progress pseudo-clique, whose writer has written the most apps in common with reviewers already in the pseudo-clique. Fig. 8 illustrates the output of PCF for several u values.

If d is the number of days over which A has received reviews and r is the maximum number of reviews received in a day, PCF’s complexity is $O(d r^2 \delta)$.

We note that if multiple fraudsters target an app in the same day, PCF may detect only the most densely connected pseudo-clique, corresponding to the most prolific fraudster, and miss the lesser dense ones.

CoReG Features. CoReG extracts the following features from the output of PCF (see Table 1) (i) the number of cliques whose density equals or exceeds u, (ii) the maximum, median and standard deviation of the densities of identified pseudo-cliques, (iii) the
maximum, median and standard deviation of the node count of identified pseudo-cliques, normalized by n (the app’s review count), and (iv) the total number of nodes of the co-review graph that belong to at least one pseudo-clique, normalized by n.

4.3 Reviewer Feedback (RF) Module

Reviews written by genuine users of malware and fraudu-lent apps may describe negative experiences. The RF module exploits this observation through a two step approach: (i) detect and filter out fraudulent reviews, then (ii) identify malware and fraud indicative feedback from the remaining reviews.

Step RF.1: Fraudulent Review Filter. We posit that certain features can accurately pinpoint genuine and fake reviews. We propose several such features, see Table 2 for a summary, defined for a review R written by user U for an app A.

Text based features. We used the NLTK library [30] and the Naive Bayes classifier, trained on two datasets: (i) 1,041 sentences extracted from randomly selected 350 positive and 410 negative Google Play reviews, and (ii) 10,663 sen-tences extracted from 700 positive and 700 negative IMDB movie reviews [31]. 10-fold cross validation of the Naive Bayes classifier over these datasets reveals a false negative rate of 16.1 percent and a false positive rate of 19.65 percent, for an overall accuracy of 81.74 percent. We ran a binomial test [32] for a given accuracy of p=0.817 over N=1,041 cases using the binomial distribution binomialðp; NÞ to assess the 95 percent confidence interval for our result. The deviation of the binomial distribution is 0.011. Thus, we are 95 percent confident that the true performance of the classifier is in the interval (79.55, 83.85).

We used the trained Naive Bayes classifier to determine the statements of R that encode positive and negative sentiments. We then extracted the following features: (i) the per-cent-age of statements in R that encode positive and negative sentiments respectively, and (ii) the rating of R and its percentile among the reviews written by U.

In Section 5 we evaluate the review classification accu-racy of several supervised learning algorithms trained on these features and on the gold standard datasets of fraudu-lent and genuine reviews introduced in Section 3.2.

Step RF.2: Reviewer Feedback Extraction. We conjecture that since no app is perfect, a “balanced” review that contains both app positive and negative sentiments is more likely to be genuine, and (ii) there should exist a relation between the review’s dominating sentiment and its rating. Thus, after filtering out fraudulent reviews, we extract feedback from the remaining reviews. For this, we have used NLTK to extract 5,106 verbs, 7,260 nouns and 13,128 adjectives from the 97,071 reviews we collected from the 613 gold stan-dard apps (see Section 3.2). We removed non ascii charac-ters and stop words, then applied lemmatization and discarded words that appear at most once. We have attempted to use stemming, extracting the roots of words, however, it performed poorly. This is due to the fact that reviews often contain (i) shorthands, e.g., “ads”, “seeya”, “gotcha”, “inapp”, (ii) mis-spelled words, e.g., “pathytic”, “folish”, “gredy”, “dispear” and even (iii) emphasized mis-spellings, e.g., “hackkked”, “spammmmerrr”, “spooooky”. Thus, we ignored stemming.

We used the resulting words to manually identify lists of words indicative of malware, fraudulent and benign behav-iors. Our malware indicator word list contains 31 words (e.g., risk, hack, corrupt, spam, malware, fake, fraud, black-list, ads). The fraud indicator word list contains 112 words (e.g., cheat, hideous, complain, wasted, crash) and the benign indicator word list contains 105 words.

RF Features. We extract 3 features (see Table 1), denoting the percentage of genuine reviews that contain malware, fraud, and benign indicator words respectively. We also extract the impact of detected fraudulent reviews on the overall rating of the app: the absolute difference between the app’s average rating and its average rating when ignor-ing all the fraudulent reviews.

4.4 Inter-Review Relation (IRR) Module

This module leverages temporal relations between reviews, as well as relations between the review, rating and install counts of apps, to identify suspicious behaviors.
Plots the lower bound on the number of fake reviews that need to be posted to cancel a 1-star review, versus the app’s current rating. It shows that the number of reviews needed to boost the rating of an app is not constant. Instead, as a review campaign boosts the rating of the subject app, the number of fake reviews needed to continue the process, also increases. For instance, a 4 star app needs to receive 3, 5-star reviews to compensate for a single 1 star review, while a 4.2 star app needs to receive 4 such reviews. Thus, adversaries who want to increase the rating of an app, i.e., cancel out previously received negative reviews, will need to post an increasing, significant number of positive reviews.

Such a “compensatory” behavior is likely to lead to suspiciously high numbers of positive reviews. We detect such behaviors by identifying outliers in the number of daily positive reviews received by an app. Fig. 9 shows the timelines and suspicious spikes of positive reviews for 2 apps from the fraudulent app dataset (see Section 3.2). We identify days with spikes of positive reviews as those whose number of positive reviews exceeds the upper outer fence of the box-and-whisker plot built over the app’s numbers of daily positive reviews.

Reviews, Ratings and Install Counts. We used the Pearson’s x^2 test to investigate relationships between the install count and the rating count, as well as between the install count and the average app rating of the 87 K new apps, at the end of the collection interval. We grouped the rating count in buckets of the same size as Google Play’s install count buckets. Fig. 10 shows the mosaic plot of the relationships between rating and install counts. $p=0.0008924$, thus we conclide dependence between the rating and install counts. The standardized residuals identify the cells (rectangles) that contribute the most to the x^2 test. The most significant rating:install ratio is 1:100.

cells correspond to apps that have a certain install count range (x axis) and average rating range (y axis). It shows that few popular apps, i.e., with more than 1,000 installs, have below 3 stars, or above 4.5 stars. We conjecture that fraudster efforts to alter the search rank of an app will not be able to preserve a natural balance of the features that impact it (e.g., the app’s review, rating, and install counts), IRR

Features. We extract temporal features (see Table 1): the number of days with detected spikes and the maximum amplitude of a spike. We also extract (i) the ratio of installs to ratings as two features, $I_1 = R_1$ and $I_2 = R_2$ and (ii) the ratio of installs to reviews, as $I_1 = R_v_1$ and $I_2 = R_v_2$. I_1 and I_2 denote the install count interval of an app, δR_t; R_t and its rating interval and δR_v; R_v and its (genuine) review interval.

4.5 Jekyll-Hyde App Detection (JH) Module

In addition, Android’s API level 22 labels 47 permissions as “dangerous”. Fig. 12b compares the distributions of the number of dangerous permissions requested by the gold standard malware, fraudulent and benign apps. The most popular dangerous permissions among these apps are “modify or delete the contents of the USB storage”, “read phone status and identity”, “find accounts on the device”, and “access precise location”. Only 8 percent of the legitimate apps request more than 5 dangerous permissions, while 16.5 percent of the malware.

After a recent Google Play policy change [33], Google Play organizes app permissions into groups of related permissions. Apps can request a group of permissions and gain implicit access also to dangerous permissions.

JH Features. We extract the following features (see Table 1)

5.1 Experiment Setup

We have implemented FairPlay using Python to extract data from parsed pages and compute the features, and the R tool to classify reviews and apps. We have set the threshold density value u to 3, to detect even the smaller pseudo cliques.

We have used the Weka data mining suite [34] to perform the experiments, with default settings. We experimented with multiple supervised learning algorithms. Due to space constraints, we report results for the best performers: MultiLayer Perceptron (MLP) [35], Decision Trees (DT) (C4.5) and Random Forest (RF) [36], using 10-fold cross-validation [37]. For the backpropagation algorithm of the MLP classifier, we set the learning rate to 0.3 and the momentum rate to 0.2. We used MySQL to store collected data and features.

5.2 Review Classification
To evaluate the accuracy of FairPlay’s fraudulent review detection component (RF module), we used the gold standard datasets of fraudulent and genuine reviews.

5.3 App Classification

To evaluate FairPlay, we have collected all the 97,071 reviews of the 613 gold standard malware, fraudulent and benign apps, written by 75,949 users, as well as the 890,139 apps rated by these users.

In the following, we evaluate the ability of various supervised learning algorithms to correctly classify apps as either benign, fraudulent or malware.

Fraud Detection Accuracy. Table 4 shows 10-fold cross validation results of FairPlay on the gold standard fraudulent and benign apps (see Section 3.2). All classifiers achieve an accuracy of around 97 percent. Random Forest is the best, having the highest accuracy of 97.74 percent and the lowest FPR of 1.01 percent. Its EER is 2.5 percent and the area under the ROC curve (AUC) is 0.993 (see Fig. 15).

Fig. 16a shows the co-review subgraph for one of the seed fraud apps identified by FairPlay’s PCF. The 37 accounts that reviewed the app form a suspicious tightly connected clique: any two of those accounts have reviewed at least 115 and at most 164 apps in common.

Malware Detection Accuracy. We have used Sarma et al. [16]’s solution as a baseline to evaluate the ability of FairPlay to accurately detect malware. We computed Sarma et al. [16]’s RCP and RPCP indicators (see Section 2.1) using the longitudinal app dataset. We used the SVM based variant of Sarma et al. [16], which performs best. Table 4 shows 10-fold cross validation results over the malware and benign gold standard sets. FairPlay significantly outperforms Sarma.

High: any two of the 37 accounts reviewed at least 115 apps and up to 164 apps in common! (b & c) Statistics over the 372 fraudulent apps out of 1,600 investigated: (b) Distribution of per app number of discovered pseudo-cliques. 93.3 percent of the 372 apps have at least 1 pseudo-clique of u 3 (c) Distribution of percentage of app reviewers (nodes) that belong to the largest pseudo-clique and to any clique. Eight percent of the 372 apps have more than 90 percent of their reviewers involved in a clique et al. [16]’s solution, with an accuracy that consistently exceeds 95 percent. We note that the performance of Sarma et al.’s solution is lower than the one reported in [16]. This inconsistency may stem from the small number of malware apps that were used both in [16] (121 apps) and in this paper (212 apps).

For FairPlay, Random Forest has the smallest FPR of 1.51 percent and the highest accuracy of 96.11 percent. It also achieves an EER of 4 percent and has an AUC of 0.986. This is surprising: most FairPlay features are meant to identify search rank fraud, yet they also accurately identify malware.

Is Malware Involved in Fraud? We conjectured that the above result is due in part to malware apps being involved in search rank fraud. To verify this, we have trained FairPlay on the gold standard benign and fraudulent app datasets, then we have tested it on the gold standard malware dataset. MLP is the most conservative algorithm, discovering 60.85 percent of malware as fraud participants. Random Forest discovers 72.15 percent, and Decision Tree flags 75.94 percent of the malware as
Top-most Impactful Features. We further seek to compare the efficacy of FairPlay’s features in detections fraudulent apps and malware. Table 6 shows the most impactful features of FairPlay when using the Decision Tree algorithm to classify fraudulent versus benign and malware versus benign apps. It shows that several features are common: the standard deviation, median and maximum over the sizes of identified pseudo-cliques (CS_{SD}, CS_{med}, CS_{max}), the number of reviews with fraud indicator words (fraudW). Surprisingly, even the number of reviews with malware indicator words (malW) has an impact in identifying fraudulent apps, yet, as expected, it has a higher rank when identifying malware apps.

In addition, as expected, features such as the percentage of nodes involved in a pseudo-clique (inCliqueCount), the number of days with spikes (spikeCount) and the maximum density of an identified pseudo-clique (r_{max}) are more relevant to differentiate fraudulent from benign apps. The number of pseudo-cliques with density larger than 3 (nClques) the ratio of installs to reviews (I_1=R_{v1}) and the number of dangerous permissions (dangerCount) are more effective to differentiate malware from benign apps.

More surprising are the features that do not appear in the top, for either classifier. Most notably, the Jekyll-Hyde features that measure the ramps in the number of dangerous permissions. One explanation is that the 212 malware apps in our gold standard dataset do not have sufficient dangerous permission ramps. Also, we note that our conjecture that fraudster efforts to alter the search rank of an app will not be able to preserve a natural balance of the features that impact it (see IRR module) is only partially validated: solely the I_1/R_{v1} feature plays a part in differentiating malware from benign apps.

Furthermore, we have zoomed in into the distributions of the sizes and densities of the largest pseudo-cliques, for the gold standard fraudulent and malware apps. Fig. 17 shows scatterplots over the gold standard fraudulent and malware apps, of the sizes and densities of their largest pseudo-cliques, as detected by FairPlay. Fig. 17a shows that fraudulent apps tend to have very large pseudo-clique and Fig. 17c shows that malware apps have significantly smaller pseudo-cliques. We observe however that malware apps have fewer reviews, and some malware apps have pseudo-cliques that contain almost all their nodes. Since the maxium, median and standard deviation of the pseudo-clique sizes are computed over values normalized by the app’s number of reviews, they are impactful in differentiating malware from benign apps.

Fig. 17b shows that the largest pseudo-cliques of the larger fraudulent apps tend to have smaller densities. Fig. 17d shows a similar but worse trend for malware apps, where with a few exceptions, the largest pseudo-cliques of the malware apps have very small densities.
5.4 FairPlay on the Field

We have also evaluated FairPlay on other, non “gold standard” apps. For this, we have first selected 8 app categories: Arcade, Entertainment, Photography, Simulation, Racing, Sports, Lifestyle, Casual. We have then selected the 6,300 apps from the longitudinal dataset of the 87K apps, that belong to one of these 8 categories, and that have more than 10 reviews. From these 6,300 apps, we randomly selected 200 apps per category, for a total of 1,600 apps. We have then collected the data of all their 50,643 reviewers (not unique) including the ids of all the 166,407 apps they reviewed.

We trained FairPlay with Random Forest (best performing on previous experiments) on all the gold standard benign and fraudulent apps. We have then run FairPlay on the 1,600 apps, and identified 372 apps (23 percent) as fraudulent. The Racing and Arcade categories have the highest fraud densities: 34 percent and 36 percent of their apps were flagged as fraudulent.

Intuition. We now focus on some of the top most impactful FairPlay features to offer an intuition for the surprisingly high fraud percentage (23 percent of 1,600 apps). Fig. 16b shows that 93.3 percent of the 372 apps have at least 1 pseudo-clique of u 3, nearly 71 percent have at least 3 pseudo-cliques, and a single app can have up to 23 pseudo-cliques. Fig. 16c shows that the pseudo-cliques are large and encompass many of the reviews of the apps: 55 percent of the 372 apps have at least 33 percent of their reviewers involved in a pseudo-clique, while nearly 51 percent of the apps have a single pseudo-clique containing 33 percent of their reviewers.

5.5 Coercive Review Campaigns

Upon close inspection of apps flagged as fraudulent by FairPlay, we detected apps perpetrating a new attack type: harass the user to either (i) write a positive review for the app, or (ii) install and write a positive review for other apps (often of the same developer). We call these behaviors coercive review campaigns and the resulting reviews, as coerced reviews. Example coerced reviews include, “I only rated it because i didn’t want it to pop up while i am playing”, or “Could not even play one level before i had to rate it [...]. they actually are telling me to rate the app 5 stars”.

In order to find evidence of systematic coercive review campaigns, we have parsed the 2.9 million reviews of our dataset to identify those whose text contains one of the root words “make”, “ask”, “force” and “rate”. Upon manual inspection of the results, we have found 1,024 coerced reviews. The reviews reveal that apps involved in coercive review campaigns either have bugs (e.g., they ask the user to rate 5 stars even after the user has rated them), or reward the user by removing ads, providing more features, unlock-We have observed several duplicates among the coerced reviews. We identify two possible explanations. First, as we previously mentioned, some apps do not keep track of the user having reviewed them, thus repeatedly coerce subsequent reviews from the same user. A second explanation is that seemingly coerced reviews, can also be posted as part of a negative search rank fraud campaign. However, both scenarios describe apps likely to have been subjected to fraudulent behaviors.

We have introduced FairPlay, a system to detect both fraud-ulent and malware Google Play apps. Our experiments on a newly contributed longitudinal app dataset, have shown that a high percentage of malware is involved in search rank fraud; both are accurately identified by FairPlay. In addition, we showed FairPlay’s ability to discover hundreds of apps that evade Google Play’s detection technology, including a new type of coercive fraud attack.

CONCLUSIONS

We have introduced FairPlay, a system to detect both fraud-ulent and malware Google Play apps. Our experiments on a newly contributed longitudinal app dataset, have shown that a high percentage of malware is involved in search rank fraud; both are accurately identified by FairPlay. In addition, we showed FairPlay’s ability to discover hundreds of apps that evade Google Play’s detection technology, including a new type of coercive fraud attack.

REFERENCES

