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Abstract: 
            This Is A Lot Of Buzz Recent To The Use Of Quantum-Enhanced Technologies For Addressing Various Machine-

Learning Tasks. For Supervised Learning, Variational Techniques Which Utilize Classical Capacities Of Inefficient Quantum 

Machines With The Aid Of Classic Computing Techniques Are Widely Used. Among These Techniques, Variational Atomic 

Classification (Vqc) Offers An Eventual Quantum Advantage In That It Makes Use Of Quantum-Enhanced Characteristics That 

Are Challenging To Compute Using Conventional Methods. The Mapping Of Traditional Face Appeal Into A Quantum-

Enhanced Appearance Space Influences Its Performance. Although Multiple Quantum-Mapping Methods Have Been Proposed 

Thus Far, There Has Been Limited Discourse Over Appropriate Mapping Of Discrete Features, Including Zip Code, Age 

Group, And Others, Which Can Frequently Important For Classifying Relevant Datasets. We First Present The Efficient 

Mappings Of Such Discrete Features Into Just A Couple Of Qubits For Vqc Using Quantum Random-Access Coding (Qrac). 

We Outline Numerous Methods Of Encoding And Show Their Strengths And Limitations In Algebraic Simulations. We 

Showed Experimentally That Qrac Might Help By Decreasing The Parameters Of Vqc And Speeding Up The Mapping Process 

Using Fewer Qubits. Using Both Simulators And Sincere Quantum Devices, We Conducted Experiments On Real-World 

Datasets To Verify The Efficacy Of The Qrac In Vqc. 

 

Keywords — supervised instruction, variational quantum computations, quantitative device learning, quantum random-

access code (QRAC), and discrete features. 
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I.INTRODUCTION 

Research on utilizing quantum computing for machine 

learning applications, like as grouping, degradation, and 

anomaly detection, has surged due to improvements in 

quantum[1] computing technology. The variational 

methods  which are additionally frequently employed in 

optimization are the core of many quantum-enhanced 

machine learning methods especially those for 

classification. It has been suggested that these methods 

may use either noisy quantum devices and classical 

computing devices to gain a quantum advantage. The 

variational quantum classifier (VQC) direct approach 

and the quantum kernel estimation indirect approach are 

the two categories into whose the quantum-improved 

techniques can be separated Under certain computational 

complexity arguments, each of the methods are, in the 

end, for mapping real-valued features into quantum-

enhanced feature space, which mapping is thought to be 

hard to compute by any classical computational device 

However, the majority of mapping algorithms serve real-

valued mark vectors; there lack many for binary and 

discrete features. However, the power of quantum bits is 

constrained, even if quantum feature space can be linked 

to analog features of quantum bits that have capacity to 

store chronic values. For example, the Holevo[2] bound 

restricts that n if the information is to be recovered with 

certainty. The Holevo bound confines the quantity of 

information that n qubits can store to n bits, and nothing 

more. Due to the Nayak bound, whose restricts the 

amount information that can be retrieved from m qubits 

in order to recover any one out of n bits (for n ≥ m), the 

limit even holds in the probabilistic instance. In 

particular, to recover any one out of n bits with certainty, 

one still needs n qubits. If constant errors allowable 

upon retrieving any one of the bits, however a linear 

saving is attainable; However, in that case, quantum-

enhanced coding adds no further benefit. In real-world 

datasets, classification models generally utilize binary 

features, such yes/no responses to questions, in addition 

to (discrete) grouping details, as zip code, age, and 

ethnic group, that is naturally represented with 

bitstrings. Before the discrete features can be efficiently 

used in machine learning models that depend upon the 

continuity of their inputs, they has to be encoded into 

continuous admit appearance. For such purposes, many 

encodings have been proposed, the most often used 

becoming one-hot encoding[3]. It is widely 

acknowledged that the encodings may significantly 

influence how well the learning models work (for extra 

details, see Section II). It is not simple to map such 

binary and discrete features into quantum-enhanced 

feature space, because as of this writing, 

This article's remaining sections are organized as 

follow. In Section II, we review pertinent studies 

focusing on feature mapping strategies. After that, we 

look to the QRAC[4] in Part IV and the VQC in 

Chapter III-B. More specifically, Section IV-B explains 

the proposed technique for merging QRACs into VQCs, 

and Section IV-C explores the connection to functional 

QRACs, which can be thought of as binary 

classification with binary inputs. In Section V, we give 

arguments regarding the potential and constraints of 

QRACs for supervised learning along with a geometric 

instance of encoding binary features using QRACs in 

several forms. In Section VI, we present empirical 

comparisons of the recommended technique to 

traditional VQC on some of the benchmark datasets[5]. 

 

      II.ASSOCIATED EFFORT 
Discrete feature datasets which are structured are 

widely available. Categorical or qualitative data are 

phrases utilized for describing the distinct features. 

These are significant features that have an essential 

effect on prediction models' performance. In specific 

learning models, like decision trees, discrete features 

can be utilized simply; nevertheless, in the majority of 

applications of neural-network models, discrete features 

have to be translated into continuous features first. In 

fact, it has been noted that whilst neural-network 

models are prevalent for handling unstructured datasets, 

tree-based models[6] tend to be more frequently 

selected by winning teams in machine learning rivalries 

when dealing with structured datasets that contain 

categorical features, as pointed out in. 

 

It's essential for understanding how to employ 

categorical features in neural network models with 

continuous inputs. For the purpose of for uniformity 

within the training phase and output stability following 

small input changes within the prediction phase, 

features have to stay similar. Many traditional 

techniques exist for translating discrete values to 

numerical values because easy replacement of 

categorical qualities with integers fails to operate well 

in neural network models. In addition, they come under 

multiple names, including (dense) encodings, 

(distributed) representations , and (entity) embeddings . 

The Mapping Techniques Can Be Categorized Into 

Three Groups: Determined, Algorithmic, And 

Automated, According To The Level Of Complexity[7] . 

The Techniques Most Commonly Employed Are 

Determined Ones And Which Include Hash Encoding, 

Ordinal Encoding, And One-Hot Encoding. The 

Indoctrination Of The Categorical Values Based On 

Certain Simple Regulations Or Lookup Tables Has Been 

Rectified Through The Techniques In This Category. 

http://www.ijctjournal.org/
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One-Hot Encoding, For Example, Utilises Bit Strings Of 

Length D That Have A Single 1 And A Single 0 To 

Represent D Distinct Class Values, Such As 100, 010, 

And 001 When D = 3.  They Are Commonly Employed, 

And Popular Machine Learning Libraries As Scikit-

Learn Give Their Implementation. Combining Kernel 

Techniques With Quantum-Enhanced Support Vector 

Machine (SVM)[8] On Near-Term Quantum Devices 

Centers Upon The Embedding Of Classical Data Into 

The Large Hilbert Space Of Quantum Devices,. 

Nevertheless, As Soon As We Understand, These Are 

No Quantum Approaches Available For Handling 

Categorical Features. This May Happen Because They 

Can Be Encoded Using The Previously Presented 

Traditional Methods Before Using Them In The 

Quantum Subprograms. For Classification And Other 

Machine Learning[9] Difficulties, Regular Neural 

Networks And Quantum Models Have Been Merged At 

Particular Recent Suggested Tackles. 

 

Combining Kernel Techniques With Quantum-Enhanced 

Support Vector Machine (SVM) On Near-Term Quantum 

Devices Centers Upon The Embedding Of Classical Data 

Into The Large Hilbert Space Of Quantum Devices. 

Nevertheless, As Soon As We Understand, These Are No 

Quantum Approaches Available For Handling Categorical 

Features. This May Happen Because They Can Be 

Encoded Using The Previously Presented Traditional 

Methods Before Using Them In The Quantum 

Subprograms. For Classification And Other Machine 

Learning Difficulties, Regular Neural Networks And 

Quantum Models Have Been Merged At Particular Recent 

Suggested Tackles. 

 

        III.VARIATIONAL QUANTUM CLASSIFIER 
      Here, we present a brief overview of the VQC 

framework, notably for binary organizations problems, in 

which a two-valued quantum measurement generates two 

labels. Bear mindful that, as indicated, we can extend the 

classifier for multiclass organization. The n-class 

classification, for examples, occurs in  by determining the 

overlap among its final state and n maximally orthogonal 

target states, each of that corresponding to a label. Since 

many measurements are used to figure out the goals state, 

this can be thought of as the QRAC de-coding process. 
 

A. CLASSICAL SVM 

Assume that   we are given   the training dataset   S = 

{(x1, y1), (x2, y 2 ) ,..., (xm ,S ym )S}, where xi ∈ Rd 

and yi ∈{−1, 1}. The goal of learning a binary 
classifier from S is to construct a function f (x) 
so that f (xi)yi > 0 ∀i.  
{−1, 1}. The goal of learning a binary classifier from S 

is to construct a function f (x) so that f (xi)yi > 0 ∀i. The 
simplest form of such function is a linear classifier f (x) 

= wT x + b, where w ∈ Rd and b ∈ R. S is called linearly 
sep. 

B. CLASSICAL SVM 

Assume that   we are given   the training dataset   S = 

{(x1, y1), (x2, y 2 ) ,..., (xm ,S ym )S}, where xi ∈ Rd 

and yi ∈ {−1, 1}. The goal of learning a binary 
classifier from S is to construct a function f (x) 
so that f (xi)yi > 0 ∀i. The simplest form of 
such function is a linear classifier f (x) = wT x 
+ b, where w ∈ Rd and b ∈ R. S is called 
linearly sep. 

C. CLASSICAL SVM 

Assume that   we are given   the training dataset   S = 

{(x1, y1), (x2, y 2 ) ,..., (xm ,S ym )S}, where xi ∈ Rd 

and yi ∈{−1, 1}. The goal of learning a binary 
classifier from S is to construct a function f (x) 
so that f (xi)yi > 0 ∀i. The simplest form of 
such function is a linear classifier f (x) = wT x 
+ b, where w ∈ Rd and b ∈ R. S is called 
linearly sep. 

D. CLASSICAL SVM 

Assume that   we are given   the training dataset   S = 

{(x1, y1), (x2, y 2 ) ,..., (xm ,S ym )S}, where xi ∈ Rd 

and yi ∈{−1, 1}. The goal of learning a binary classifier 

from S is to construct a function f (x) so that f (xi)yi > 0 

∀i. The simplest form of such function is a linear 

classifier f (x) = wT x + b, where w ∈ Rd and b ∈ R. S is 

called linearly sep-|(z| W(θ) |Ф(x))| 2 = (Ф(x) .W †(θ). 

z)(z |W(θ)| Ф(x)). 

The function f (x) is then given by the mean of g with the 

bias b f (x) = (Ф(x) .W†(θ) g W(θ . Ф(x))+ b. (1) 

The predicted label is then given by the sign of f (x). The 

hyperplane (w, b) is now parameterized by θ. The ith el- 

ement of w(θ) is wi(θ) = tr(W†(θ)gW(θ)Pi), where Pi is a 

diagonal matrix whose elements are all zeros except the 

(i, i) element, which is one. Also the ith element of Ф(x) 

is Фi(x) = (Ф(x)|Pi|Ф(x)). 

Learning the best θ can be obtained by minimizing the 

cost function formulated as empirical risk R(θ) or binary 

cross entropy H (θ) with regards to the training data S. 

These cost functions to be minimized are 

 
A.QUANTUM-ENHANCED VARIATIONAL CLASSIFIER 

VQC relies on techniques for finding the best 

hyperplane (w, b) that linearly separates the embedded 

data. First, the data x ∈Rd are mapped to a (pure) 

quantum state by the feature map circuit UФ(x) that 

realizes Ф(x). This means that,conditioned on the data 

x, we apply the circuit UФ(x) to the n-qubit all-zero 

state|0n )to obtain the quantum state| Ф(x)). A short-

depth quantum circuit W(θ) is then applied to the 

http://www.ijctjournal.org/
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quantum state, where θ is the vector composed of 

parameters that will be learned from the training data. 

Finding the circuit W(θ) is akin to finding the 

separating hyperplane (w, b) in the soft- 

 

 

 

 

 

 

 

 

 

 

 

 

SVM, with the promise of quantum advantage that 
 

conditioned on the data x, we apply the circuit UФ(x) to 

the n-qubit all-zero state|0n )to obtain the quantum state| 

Ф(x)). A short-depth quantum circuit W(θ) is then 

applied to the quantum state, where θ is the vector 

composed of parameters that will be learned from the 

training data. Finding the circuit W(θ) is akin to finding 

the separating hyperplane (w, b) in the soft-SVM, with 

the promise of quantum advantage that 

 

 

E. NONLINEAR EMBEDDING 

There are many classical methods[10] for nonlinear 
embedding of data x : Ф(x)∈Rn for n > d, such as the 
polynomial kernel, which is also popular for natural 
language process- ing . In this case, the two-dimensional 
data (x1, x2) is embedded into√a three-dimensional one 
(z1 , z2 , z3 ) such that z1  = x2, z2  =  2x1x2, and z3 = 
x2. On the other hand, in the quantum-enhanced SVM, 

the embedding of data to the n-qubit feature space is 
performed by applying the uni- tary UФ(x)  = 
UФ(x)H⊗nUФ(x)H⊗n, where H is the Hadamard gate, 

and UФ(x) denotes a diagonal gate in the Pauli-Z basis 

as follows: 
 
. Each bitstring is mapped on the surface of the sphere. 

The distance between two quantum states is proportional 

to the Hamming distance of their corresponding 

bitstrings. (a) (2, 1, 

-⎛ . ⎞ 
φS(x) 

UФ(x)  = exp 𝗁i S⊆[n] k∈S Zk 
⎠

 (4) 

where the coefficients φS(x) ∈ R are fixed to encode the 

data x. For example, for n= d = 2 qubits, φi(x) = xi and 

φ1,2(x) =(π   −x1)(π   −x2)  were  used  in .  The  

classifi- cation performance greatly depends on these 

functions, 

[63]. In general, UФ(x) can be any diagonal unitary that is 

effi- ciently realizable with short-depth quantum circuits. 

In total, one needs at least n≥d qubits to construct such 

quantum- enhanced feature map, i.e., the number of qubits 

is at least the dimension of the feature vector of the 

datasets.qubits in VQC[11]. When the inputs are binaries, 

the classification can be regarded as evaluating Boolean 

functions, which coincides with the functional QRAC (or f -

QRAC). We discuss the relation of our proposal with f -QRAC, 

which will0:85)-QRAC. (b) (3, 1, 0:78)-QRAC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 FIG. 1. Quantum circuit for VQC+QRAC for encoding 

discrete features. The additional gate (Vx) may be included for 

entangling the quantum states for continuous variables and 

discrete variables. Also, latent qubits may be included to extend 

the dimension of the Hilbert space. 
 

 
 

 

 

 

 
        FIG. 2. Quantum circuit for VQC without QRAC, which 

consists of fixed quantum feature mapping ФU(x)  and the 

separator W(θ) trained with the variational method. 

circuit W(θ) followed by the computational basis measure- ment. 

In the following, we refer to the VQC with QRAC as simply 

VQC+QRAC, as shown in Fig. 2. Also, we show the schematic of 

http://www.ijctjournal.org/
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VQC without QRAC in Fig. 3, which will be compared to 

VQC+QRAC in the next section 
                                       

FIG. 3. All possible configurations of (2, 1)-QRAC and (3, 
1)-QRAC. Type a- b-c represents the pattern number c of (a, 
1)-QRAC with b blue points and 2a − b orange points. (a) 
Case of (2, 1)-QRAC. (b) Case of (3, 1)-QRAC. 

higher dimension. There are at least three means to add 

dimensionality. First, by adding latent qubits, as 

suggested in [45], which are qubits initialized to some 

fixed quan- tum states, as shown in Fig. 2. Second, by 

using multiple copies of QRACs for encoding the same 

discrete features, as will be seen in Section VI-B1, 

which is similar to using copies encoding suggested in 

[39]. Third, we may use higher dimensional QRACs, 

such as (3,2,0.91)-QRAC   shown in [24], for mapping 

eight points into two-qubit Hilbert space. We ran 

experiments comparing the effectiveness of these three 

methods and obtained the train loss curves for type 3-4-

5, as shown in Fig. 6. We confirmed that all methods 

overcome the limitation of the QRAC; in particular, the 

use of higher dimensional QRACs seems to be the most 

effective. In fact, two-qubit VQC+QRAC[12] with the 

copies of (3,1)-QRAC and (3,2)-QRAC can completely 

separate the data points of 

 

 

 

 

 

 

 
              

FIG. 4. Loss curves of four types of VQC+QRAC on type 3-4-5 

over iterations. 1Q is one-qubit VQC+QRAC with (3,1)-QRAC. 

2Q (latent), 2Q (copying), and 2Q ((3,2)-QRAC) represent two-

qubit VQC+QRAC with latent qubits, the copies of (3,1)-QRAC, 

and (3,2)-QRAC, respectively 

type 3-4-5. We also confirmed that by adding dimension to the 

inseparable types of Fig. 5, there are many cases where all points 

can then be shattered. 

A. VQC WITH TWO-QUBIT QRAC 

The aforementioned discussion shows that while still achiev-

ing a constant-factor saving, (3,2)-QRAC can be more pow- 

erful than the one-qubit QRAC at the expense of one more 

qubit used. In addition, multiqubit QRACs are therefore im- 

portant in order to encode more discrete features with better 

efficiency. Unfortunately, a general method for construct- ing 

multiqubit QRACs beyond concatenation of one-qubit 

QRACs is not known, and so far only two-qubit QRACs, de- 

noted as (n, 2, p)-QRACs, were studied in the literature [23], 

[24], [58].For the first scenario, we turned real-valued 

features, such as oldpeak, into binary features by partitioning 

them with their median values, and applied the one-hot 

encoding method for discrete features, such as cp and thal. 

We then took the three most imperative features based on 

their importance estimated by a random forest classifier. The 

selected three features are chest pain type cp(0), number of 

major vessels colored by fluoroscopy ca(0), and thallium 

heart scan thal(2). Here, for example, the discrete feature cp 

was transformed into the 
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FIG.5. Training loss of VQC with 3 qubits and 30 parameters 

(blue) and VQC+QRAC with 2 qubits and 20 parameters 

(orange), on the HD dataset. The solid line is the mean of the 

loss values, and the shading represents their standard deviation 

over five-fold cross-validation. 
 

and false if not. The VQC used three qubits for mapping the 

aforementioned features, whereas the VQC+QRAC can encode 

them with a single (3, 1)-QRAC. Nevertheless, we used two 

(3,1)-QRACs for VQC+QRAC to encode the same 3-b 

features in order to increase the dimension of the Hilbert 

space[13]. Thus, the VQC+QRAC used two qubits for 

mapping the aforementioned features. This is the technique 

proposed in Section V-A. 

After our work was published, there have been other 

evidences of the high efficiency of QRAC- based quantum 

classifiers on other datasets. Those demonstrate the generality 

of our proposal. Also, even when an ideal fault-tolerant 

quantum computer emerges, the pro- posed scheme still has a 

clear merit in that, compared to quantum classifiers without 

QRAC, a shorter circuit is eas- ier to train, which hopefully 

may realize better classifi- cation performance. This practical 

advantage was in fact observed in the numerical simulation 

demonstrated in this article. 

 

    As described in Section IV-A, originally, QRAC is a theory 

providing a solid quantum advantage over the classical one, in 

the problem for probabilistically extracting (1 b) informa- tion 

by appropriately synthesize quantum measurement. Although 

in this article, we only utilize the encoding part of this QRAC 

theory, we will further combine the proba- bilistic 

information-extraction aspect of QRAC to extend the 

proposed method so that it could have a certain quantum 

advantage in the machine learning context. Additionally, an- 

alyzing the robustness of the proposed system itself and its 

tolerance to the noise is left for future work. 
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(n, m)-QRAC or (n, m)- f -QRAC with, e.g., m = n/2 will 

work, as indicated by the demonstration given in 

Sections V-B and V-C. Note that the size of the example 

problems considered in this article is very small, and 

thus the barren plateau issue is not clearly observed. We 

will study large- size problems to prove the genuine 

advantage of our QRAC- based method as a variational 

quantum circuit having both the trainability and the 

expressibility 

 

 

V.CONCLUSION 

 

This article proposed the QRAC-based quantum classifier for a 

given dataset having discrete features. The main improvement 

of the scheme is to provide the mean for brainwashing an input 

bitstring to a quantum state with less number of quantum bits: 

more precisely, the QRAC theory guarantees that we can 

encode a bitstring of length n into log(n)/2 qubits and recover 

any one out of n bits with probability bigger than 1/2. This 

results in a shorter circuit for education the organization 
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