
International Journal of Computer Techniques - Volume 11 Issue 1, 2024

ISSN :2394-2231 http://www.ijctjournal.org Page1

Concurrent Scaling: Evaluating AWS Lambda
Performance through Load Testing

Balasubrahmanya Balakrishna1
bbsbems@gmail.com

ORCID: 0009-0000-1195-123X
Richmond, VA, USA

Abstract – In the dynamic environment of serverless
computing, efficient concurrency management and
reasonable utilization of load testing techniques
closely correlate with performance improvement.
This paper, aiming to offer practitioners practical
insights and contribute to the theory of serverless
architectures, intends to illuminate the intricate
connection between concurrency settings and load
testing results within AWS Lambda.

The paper thoroughly explores load testing and
concurrency control in AWS Lambda. We specified a
range of concurrency settings, including provisioned
and unreserved, and meticulously selected
representative Lambda functions. We subjected these
functions to diverse simulated workloads using
industry-standard load testing methods. We
methodically measured and recorded performance
metrics, including response times, throughput, and
resource consumption, to identify significant patterns
and correlations.

The article shows discrete performance quirks
associated with various concurrency settings by
exposing necessary trade-offs and optimization
techniques. In addition to providing helpful advice
for developers and architects, this research advances
our theoretical knowledge of how concurrency
affects the performance of serverless functions.
Focusing on the unique features of AWS Lambda, the
need for customized load-testing approaches is
emphasized, offering practitioners practical advice on
how to improve the efficiency and scalability of their
serverless apps.

This article uniquely enriches the confluence of
theory, practice, and policy in serverless computing.
Defining the complex relationship between
concurrency and load testing and providing a
platform for future research enhances theoretical
underpinnings. The results provide developers and
architects with explicit guidelines on configuring
concurrency settings to meet workload needs.
Additionally, the study supports a sophisticated

approach to load testing and concurrency control in
the larger context of cloud computing, which adds to
policy discussions surrounding serverless best
practices.

Key Words– Lambda Concurrency, Load Testing
AWS Lambda, Artillery

INTRODUCTION

Several studies indicate that, in terms of web
application performance, users perceive response
times in specific ways: they consider response times
of less than 100ms as instantaneous, view delays
ranging from 100ms to 300ms as predictable,
experience a loss of attention at 1s, anticipate a
response by 2s, and are inclined to abandon the
application if the response time extends to 3s.[1]

When user expectations for web application
performance are matched with the world of serverless
computing, as demonstrated by AWS Lambda, the
importance of load testing Lambda functions is
apparent. Response times are crucial in determining
the user experience, as perceptions influence. Load
testing is a must to ensure that Lambda functions,
which are crucial to online applications, can reliably
meet or surpass the performance standards set by
users. It is critical to use load testing to comprehend
the complex link between concurrency, scalability,
and response times in Lambda functions.

LAMBDA CONCURRENCY AND LOAD TESTING

In AWS Lambda, concurrency refers to the number
of simultaneous function executions. The available
concurrency for a Lambda function is the number of
requests that can be processed concurrently by that
function. This concept is closely related to load
testing, where you simulate various levels of traffic to
assess the performance and scalability of your
application or service. Let's explore how each
concept is related:

A. Lambda Concurrency

mailto:bbsbems@gmail.com
http://www.ijctjournal.org


International Journal of Computer Techniques - Volume 11 Issue 1, 2024

ISSN :2394-2231 http://www.ijctjournal.org Page2

a. Provisioned concurrency: can be
set for a Lambda function to
guarantee a consistent availability
of a defined number of instances
for request handling. Provisioned
concurrency proves beneficial
when the aim is to reduce cold
starts and maintain performance at
the anticipated level.

b. Unreserved Concurrency: The
remaining concurrency not
allocated to provisioned
concurrency is considered
unreserved. This concurrency is
subject to automatic scaling based
on demand.

B. Load Testing
a. Simulation of Traffic: Load testing

involves simulating various levels
of user traffic to your application or
service to observe its behavior
under different conditions. This can
include varying the number of
simultaneous requests, the requests'
rate, and the requests' complexity.

C. Relation Between Concurrency and
Load Testing

a. Scalability Testing: Load testing
Lambda functions aids in
comprehending their scalability as
traffic levels rise. Testing the
behavior of functions under both
average and peak loads is
recommended. This testing also
aids in determining the throttle
behavior when the traffic increases
by x% for over y duration during
the peak traffic time.

b. Cold Start Performance:
Concurrency settings, particularly
for provisioned concurrency, may
impact Lambda function
performance during cold starts.
Load testing assists in determining
the speed at which functions scale
to manage heightened loads and
assesses the effectiveness of
provisioned concurrency in
reducing cold start latency.

D. Optimizing Concurrency for
Performance

a. Concurrency Adjustments: The
load testing results may indicate
whether your Lambda function uses
the available concurrency

efficiently. Based on these results,
you should adjust concurrency
settings to optimize performance.

b. Scaling Behavior: Load testing
unveils the scaling behavior of your
Lambda functions, providing
insights into the service's
responsiveness to changes in
demand. It enables an
understanding of the speed at
which the service can adapt and
assesses whether the concurrency
settings align with your
application's requirements.

E. Monitoring and Observability
a. Performance Metrics: Monitoring

and observability tools often
accompany load testing, offering
insights into the performance
metrics of your Lambda functions.
This valuable information aids in
making informed decisions about
concurrency settings.

LOAD TESTING IN SERVERLESS ENVIRONMENTS

This section introduces the practice of load testing for
serverless applications, highlighting Artillery[2] as a
load-testing framework among various options.
Employing Artillery to load test a Lambda RESTful
API on AWS. The goal involves configuring
Artillery to simulate user interactions, capture
response times, and other metrics[3].

A. Case Study: Load Testing a Lambda
RESTful API

Let us consider a simple Lambda
RESTful API hosted in AWS, which, on
invoke process, produces a response as
shown in Figure 1:

Figure 1: Lambda API response

http://www.ijctjournal.org


International Journal of Computer Techniques - Volume 11 Issue 1, 2024

ISSN :2394-2231 http://www.ijctjournal.org Page3

Using a simple Artillery configuration, as
shown in Figure 2, invoking Lambda
function at a rate of 5 per second, ramping
load up to 3 per second.

Figure 2: Artillery configuration

Artillery will run the test, launching new
virtual users as defined under config, phases
block as shown in Figure 2.

The test generates several reports, but a few
important ones for the discussion are shown
in Figures 3 and 4 below. Figure 3 shows
that the test invoked the Lambda function
480 times with 0 errors. In this scenario, the
load was ramped from 1 TPS to 5 TPS to
simulate traffic ramp-up.

Figure 3: Artillery Test Report

Artillery shows the median response time
was 147 ms, p95 was 468.8 ms, and p99 was
772.9 ms.

Figure 3: Artillery Test Metric Report

This result gives insight into Lambda
metrics under load. The recommended
approach is to look at some of the metrics
like Invocations, Concurrent Execution, and
Duration metrics from the AWS console,
which for this run looks as shown in Figure
4:

Figure 5: AWS Cloudwatch Metrics.

Let us run a slightly bigger load with a TPS
of 15 by updating the rampTo value to 15.
The test produces below Artillery and AWS
metrics:

Artillery reports, in Figure 6 and Figure 7,
show 1200 successful tests against 480 tests
in the previous run. The median response
time for this run is 130 ms, p95 is 450 ms,
and p99 is 528.6 ms.

http://www.ijctjournal.org


International Journal of Computer Techniques - Volume 11 Issue 1, 2024

ISSN :2394-2231 http://www.ijctjournal.org Page4

Figure 6: Artillery Test Report

Figure 7: Artillery Test Metric Report

Looking at the AWS metrics for the second
run, shown in Fig 8

Figure 8: AWS Cloudwatch Metrics,

It is observable that the function's duration
extended in response to heightened load. In

the initial minute, the function executed for
approximately 5 seconds, gradually reaching
a peak of 15 seconds before stabilizing for
the remainder of the load test.

More TPS sometimes equals to more
concurrency and Concurrency is a point-in-
time measurement , and not the same as
request per second.

Long-running functions require more
concurrency.

Hence, concurrency is calculated as:

Concurrency = TPS x Duration (in
seconds).[4]

For example,

10 RPS x 500 ms = 5 concurrency, and

10 RPS x 1s = 10 concurrency.

Using CloudWatch performance metrics and
a load-testing framework, we can determine
the optimal concurrency for your Lambda
function. This involves generating
production-level or higher loads to assess
and define the desired (reserved)
concurrency for the specific function under
consideration.

It's important to highlight that load-testing
frameworks such as Artillery drive
synchronous invocations, impacting Lambda
function duration, TPS, and concurrency.
This dynamic would differ if we were to use
asynchronous invocations with Lambda.

By executing the function asynchronously
(using headers X-Amz-Invocation-Type:
Event and X-Amz-Log-Type: None) and
rerunning the load test, we promptly
achieved 3 concurrency, ramping up from
that point. In contrast, synchronous
invocation commenced with approximately
1 concurrency. Therefore, an asynchronous
invocation is favored, enabling quicker
bursts and benefiting from AWS's built-in
retry logic.

http://www.ijctjournal.org


International Journal of Computer Techniques - Volume 11 Issue 1, 2024

ISSN :2394-2231 http://www.ijctjournal.org Page5

Figure 9: Aysnc invocation of Lambda function

CONCLUSION

In conclusion, exploring load testing in serverless
environments, mainly focusing on AWS Lambda
functions, underscores the critical role of meticulous
performance evaluation in optimizing application
responsiveness. Leveraging frameworks like Artillery,
developers can navigate the complexities of
concurrency, scalability, and user-centric response
times. The case study involving the load testing of a
Lambda RESTful API on AWS provides tangible
insights into Artillery's effectiveness in assessing a
function's ability to handle production-level loads.

The nuanced understanding gained through this
exploration is crucial for making informed decisions
on concurrency settings and ensuring that Lambda
functions align with user expectations for
instantaneous, predictable, and timely responses.

The observation that asynchronous invocation yields
superior concurrency performance compared to
synchronous invocation further emphasizes the
practical implications of load-testing choices.

This exploration of load-testing techniques, metrics
analysis, and performance optimization gives
developers useful knowledge about serverless
architectures and emphasizes the importance of using
the appropriate instruments for precise evaluations.
Load testing becomes an essential technique as
serverless computing develops, helping to produce
scalable and dependable services that satisfy users in
ever-changing and dynamic contexts.

REFERENCES

[1] (n.d.). Defining the Core Web Vitals metrics
thresholds. Web.dev.

https://web.dev/articles/defining-core-web-vitals-
thresholds?continue=https%3A%2F%2Fdevelopers.g
oogle.com%2Flearn%2Fpathways%2Fweb-
vitals%23article-
https%3A%2F%2Fweb.dev%2Fdefining-core-web-
vitals-thresholds
[2] Artillery Software, Inc. (n.d.). Artillery Docs.
Https://www.Artillery.io/Docs.
https://www.artillery.io/docs/get-started/first-test
[3] AWS (n.d.). Important metrics for CloudWatch.
AWS Lambda Operator Guide.
https://docs.aws.amazon.com/lambda/latest/operatorg
uide/important-metrics.html
[4] AWS (n.d.). Lambda function scaling. AWS
Lambda Developer Guide.
https://docs.aws.amazon.com/lambda/latest/dg/lambd
a-concurrency.html

AUTHOR INFORMATION

Balasubrahmanya Balakrishna is a Senior Lead
Software Engineer, serverless-focused strategy leader,
open-source enthusiast, and cloud-native advocate.

FUNDING STATEMENT

This paper received no specific grant from any
funding agency in the public, commercial, or not-for-
profit sectors.

http://www.ijctjournal.org

