
International Journal of Computer Techniques -– Volume 6 Issue 1, Jan – Feb 2019

ISSN: 2394-2231 http://www.ijctjournal.org Page 11

--************************----------------------------------

Abstract:
A graph database is an online database management system with Create, Read, Update and Delete

(CRUD) operations working on a graph data model. Unlike other databases, relationships take first priority

in graph databases. This means your application doesn’t have to infer data connections using things like

foreign keys or out-of-band processing, such as MapReduce. The data model for a graph database is also

significantly simpler and more expressive than those of relational or other NoSQL databases.

Keywords —Workspace, Shortest Path Algorithm, Dijkstra shortest path algorithm

--************************----------------------------------

I. INTRODUCTION

Now-a-days the data stored in a database and which is used for application is huge. SAP HANA Graph is

an integral part of SAP HANA core functionality. It expands the SAP HANA platform with native

support for graph processing and allows you to execute typical graph operations on the data stored in an

SAP HANA system. Enterprises and organizations collect and analyze huge volumes of data that is

increasingly connected. Traditional approaches of storing and processing data in relational databases are

insufficient when it comes to analyzing “connections” efficiently. In the recent past, graph databases

have proven their suitability for novel types of use cases. For example, manufacturing companies

 SAP HANA graph provides built-in algorithms and programming models to analyze connected data.

As an integral part of the SAP HANA platform, SAP HANA graph combines and bridges the worlds of

relational and connected data, thereby reducing system landscape complexity and providing real-time

graph analysis. Furthermore, graph analysis can be easily combined with other SAP HANA engines, for

example full-text search and geospatial analysis, making SAP HANA an ideal platform for multi-modal

applications.

II. CREATING WORKSPACES

First, we must create Hana workspace to use Hana Graph model.

Hana Workspaces can be created using SQL scripts as below.

During the creation of a new graph workspace, SAP HANA Graph assures that all specified tables and

columns exist and have supported data types. A newly created graph workspace is valid if the specified

columns and tables exist and fulfill the validity requirements:

• vertex key and edge key columns

1Vnsanyasirao Chittem, 2Narayana Varma
1Senior Lead Consultant Databases, 2Associate Director – SAP HANA and EDW

1Hana Practice Team ,
1TekLink Software Ltd, Hyderabad, India

1Venkata.nsrao@teklink.com 2manish.maheshwari@teklink.com

Hana Advanced Modeling Graph Processing Techniques

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 6 Issue 1, Jan – Feb 2019

ISSN: 2394-2231 http://www.ijctjournal.org Page 12

o Are of the supported key types (TINY INT, SMALL INT, INTEGER, BIG INT, VARCHAR, and

NVARCHAR)

o Have NOT NULL flag

o Have UNIQUE flag

• Source and target columns

o Have the same data type as vertex key column

o Have not NOT NULL flag

create your Own schema before creating all the tables to create Graph Work Space.

Create vertex Table Example:

Create Column Table Graphvertex(Id Varchar(20),

Primary Key("Id")

);

Create Edge Table Example :

Create Column Table Graphedge(Id Int Generated By Default As Identity(Start With 1 Increment By 1)

Not Null,

Source Varchar(20) Not Null,

Target Varchar(20) Not Null,

PRIMARY KEY("ID')

);

Insert some data into Vertex and Edge table before creating workspace and after inserting data into

vertex and edge table create workspace using create workspace command in Hana as below.

Create Workspace Example

Create GRAPH WORKSPACE "GRAPHFORDEMO"

EDGE TABLE "GRAPHEDGE"

SOURCE COLUMN "SOURCE"

TARGET COLUMN "TARGET"

KEY COLUMN "ID"

VERTEX TABLE "GRAPHVERTEX"

KEY COLUMN "ID";

Use workspace in web browser.

III. GRAPH ALGORITHMS

Shortest Path ALGORITHMS

After creating workspace and log into web browser , to find out shortest path between nodes different

algorithms will play key roles.

International Journal of Computer Techniques -– Volume 6 Issue 1, Jan – Feb 2019

ISSN: 2394-2231 http://www.ijctjournal.org Page 13

Dijkstra’s Shortest Path algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like

Prim’s MST, we generate a SPT (shortest path tree) with given source as root. We maintain two sets, one set

contains vertices included in shortest path tree, other set includes vertices not yet included in shortest path

tree. At every step of the algorithm, we find a vertex which is in the other set (set of not yet included) and

has a minimum distance from the source.

Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path from a single source

vertex to all other vertices in the given graph.

Algorithm

1) Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e.,

whose minimum distance from source is calculated and finalized. Initially, this set is empty.

2) Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE.

Assign distance value as 0 for the source vertex so that it is picked first.

3) While sptSet doesn’t include all vertices

….a) Pick a vertex u which is not there in sptSet and has minimum distance value.

….b) Include u to sptSet.

….c) Update distance value of all adjacent vertices of u. To update the distance values, iterate through all

adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and weight of

edge u-v, is less than the distance value of v, then update the distance value of v.

Single Source Shortest Path Algorithm

Takes a start vertex, an optional end vertex and an optional edge weight attribute as input parameters

• As output, the algorithm returns the calculated weight („distance) and the path for each target vertex

• Use Cases

� Trivial: Navigation Systems

o Navigation system can use all of the attributes that are stored in the relationships in

order to better perform (e.g. if two nodes are connected by a street without tarmac, the

algorithm should avoid this street)

� Logistics: Calculating the best route for a delivery

o The weights between nodes can represent different dimensions: distance, cost, time

etc.

o Depending on the requirements, one or many of the different dimensions can be used

to calculate the best route

International Journal of Computer Techniques -– Volume 6 Issue 1, Jan – Feb 2019

ISSN: 2394-2231 http://www.ijctjournal.org Page 14

Strongly Connected Components Algorithm

Strongly Connected Components. A directed graph is strongly connected if there is a path between all

pairs of vertices. A strongly connected component of a directed graph is a maximal strongly

connected subgraph. A directed graph is said to be strongly connected if every vertex is reachable from

every other vertex. The strongly connected components of an arbitrary directed graph form a partition into

subgraphs that are themselves strongly connected.

Ex:

Neighborhood Search Algorithm

The algorithm requires a start vertex, a direction (only follow incoming / outgoing edges), a start / end

level (distance) as well as filters for vertices and edges

• As output, the algorithm delivers a list of vertices with their depth („distance“from the start vertex)

Example:

Social Network Marketing:

o Find all friends (depth: 0), friends-of-friends (depth:1), friends-of-friends-of-friends

(depth:2) and so on

o Find users with a big network which should consist of users that also have big

networks, then target these users for marketing campaigns

IV. CALCULATION SCENARIOS IN GRAPH

calculation scenarios for various purposes. Those scenarios are represented as graphs and executed by the

calculation engine. In many cases, calculation scenarios are generated implicitly, for example when

activating models in HANA studio. BW often makes use of a particular DDL statement (CREATE

CALCULATION SCENARIO...) in order to generate them. Upon execution of such a model (scenario)

many optimizations are then done inside the calculation engine, eg push down of filters or determining the

degree of parallelism.

Starting with HANA SP9, HANA Studio offers the possibility to visualize the graph that represents the

calculation scenario.

 Example for calculation Scenario as below:

CREATE CALCULATION SCENARIO GET_NEIGHBORHOOD_EXAMPLE" USING '

<?xml version="1.0"?>

<cubeSchema version="2" operation="createCalculationScenario"

defaultLanguage="en">

<calculationScenario schema="GREEK_MYTHOLOGY"

name="GET_NEIGHBORHOOD_EXAMPLE">

<calculationViews>

<graph name="get_neighborhood_node" defaultViewFlag="true"

schema="GREEK_MYTHOLOGY" workspace="GRAPH" action="GET_NEIGHBORHOOD">

1 2

3 4 5

All vertices can be reached from all vertices:

Graph is strongly connected

2

4 3

1

No vertex can be reached from vertex 4:

Graph is not strongly connected

International Journal of Computer Techniques -– Volume 6 Issue 1, Jan – Feb 2019

ISSN: 2394-2231 http://www.ijctjournal.org Page 15

<expression>

<![CDATA[{

 "parameters": {

 "startVertices": ["Chaos"],

 "direction":"outgoing",

 "minDepth": 0,

 "maxDepth": 2

 }

 }]]>

</expression>

<viewAttributes>

<viewAttribute name="NAME" datatype="string"/>

30 P U B L I C

SAP HANA Graph Reference

Graph Algorithms

<viewAttribute name="DEPTH" datatype="int"/>

</viewAttributes>

</graph>

</calculationViews>

</calculationScenario>

</cubeSchema>

' WITH PARAMETERS ('EXPOSE_NODE'=('get_neighborhood_node',

'GET_NEIGHBORHOOD_EXAMPLE'));

The following SQL statement executes the calculation scenario and orders the resulting vertices by depth

in

reverse order.

SELECT * FROM "."GET_NEIGHBORHOOD_EXAMPLE" ORDER BY "DEPTH";

The result of this operation is the following vertex table:

The same result can be obtained through the SAP HANA Graph Viewer web tool, but using calculation

scenario script

through SQL we can get same result.

V. CONCLUSION

 According to our observations, the performances of the algorithms are strongly depends on the

entropy, information gain and the features of the data sets. There are various work has been done using the

Graph Algorithm Some recent improve algorithm reduce problem like replication, handle continuous data,

International Journal of Computer Techniques -– Volume 6 Issue 1, Jan – Feb 2019

ISSN: 2394-2231 http://www.ijctjournal.org Page 16

biased to multi value attribute. This paper provides students and researcher some basic fundamental

information about Graph databases in Hana and creating and working with Workspaces.

VI. REFERENCES

[1] https://help.sap.com/doc/21574acf46fe45a8ae9def213f2c4d9e/2.0.00/en-

us/sap_hana_graph_reference_en.pdf

[2] https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/2.0.01/en-

US/3d10ffc605524712adbaf5a00495fc37.html

[3] https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/

