
 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 1

PROGRESSIVE REPLICATION IDENTIFICATION
1.) S.Ramaraj, 2.) S.Jagadeesan M.Sc. MCA., M.Phil., ME(CSE)

Final MCA, Engineering College (Autonomous), Erode-52, Tamilnadu, India.

Email: cuteram40@gmail.com

AP/MCA, Nandha Engineering College (Autonomous), Erode-52, Tamilnadu, India.

Email: jagadeesan12398@gmail.com

--************************----------------------------------

Abstract:

 Duplicate detection is the process of identifying multiple representations of same real world

entities. Today, duplicate detection methods need to process ever larger datasets in ever shorter time:

maintaining the quality of a dataset becomes increasingly difficult. We present two novel, progressive

duplicate detection algorithms that significantly increase the efficiency of finding duplicates if the

execution time is limited: They maximize the gain of the overall process within the time available by

reporting most results much earlier than traditional approaches. Comprehensive experiments show that our

progressive algorithms can double the efficiency over time of traditional duplicate detection and

significantly improve upon related work. Comprehensive experiments show that progressive algorithms

can double the efficiency over time of traditional duplicate detection and significantly improve upon

related work. Data are among the most important assets of a company. But due to data changes and sloppy

data entry, errors such as duplicate entries might occur, making data cleansing and in particular duplicate

detection indispensable.

Keywords — Duplication, Dataset, Algorithms, Detection, Traditional approach.

--************************----------------------------------

I. INTRODUCTION

Data mining, or understanding discovery, is the

pc-assisted technique of digging via and studying

good sized units of statistics after which extracting

the meaning of the information. Data mining

equipment are expecting behaviours and destiny

tendencies, allowing companies to make proactive,

understanding-driven choices. Data mining

equipment can solution enterprise questions that

traditionally were too time consuming to solve.

They scour databases for hidden patterns,

locating predictive records that experts may pass

over as it lies outdoor their expectations. Data

mining derives its name from the similarities

between trying to find valuable data in a massive

database and mining a mountain for a vein of

treasured ore. Both techniques require both sifting

thru an enormous amount of cloth, and intelligently

probing it to locate where the price is living.

• To become aware of the more than one

representations of identical actual global entities

• To advise revolutionary reproduction

detection algorithms that drastically will increase

the efficiency of finding duplicates if the execution

time is limited.

• To maximize the benefit of the general

manner in the time available through reporting most

effects plenty earlier than traditional procedures.

RESEARCH ARTICLE OPEN ACCESS

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 2

• To double the efficiency over time of

conventional reproduction detection and

notably enhance upon associated paintings.

• To use concurrent technique. I.E., all the

statistics are taken and checked as a parallel

processes.

• To lessen Execution time.

• To employ Resource intake that is equal as

existing device but the information is kept in

more than one aid memories.

II. RELATED WORKS

The Entity resolution (ER) is the problem of

identifying which records in a database refer to the

same entity. In practice, many applications need to

resolve large data sets efficiently, but do not require

the ER result to be exact. For example, people data

from the Web may simply be too large to

completely resolve with a reasonable amount of

work. As another example, real-time applications

may not be able to tolerate any ER processing that

takes longer than a certain amount of time.

This paper investigates how we can maximize the

progress of ER with a limited amount of work using

“hints,” which give information on records that are

likely to refer to the same real-world entity. A hint

can be represented in various formats (e.g., a

grouping of records based on their likelihood of

matching), and ER can use this information as a

guideline for which records to compare first. We

introduce a family of using the hints to maximize

the number of matching records identified using a

limited amount of work. Using real data sets, we

illustrate the potential gains of our pay-as-you-go

approach compared to running ER without using

hints.

The World Wide Web is witnessing an increase

in the amount of structured content – vast

heterogeneous collections of structured data are on

the rise due to the Deep Web, annotation schemes

like Flickr, and sites like Google Base. While this

phenomenon is creating an opportunity for

structured data management, dealing with

heterogeneity on the web-scale presents many new

challenges. In this paper, we highlight these

challenges in two scenarios – the Deep Web and

Google Base. We contend that traditional data

integration techniques are no longer valid in the

face of such heterogeneity and scale. We propose a

new data integration architecture, PAYGO, which

is inspired by the concept of data spaces and

emphasizes pay-as-you-go data management as

means for achieving web-scale data integration.

The similarity join is a useful primitive operation

underlying many applications, such as near

duplicate Web page detection, data integration, and

pattern recognition. Traditional similarity joins

require a user to specify a similarity threshold. In

this paper, we study a variant of the similarity join,

termed top-k set similarity join. It returns the top-k

pairs of records ranked by their similarities, thus

eliminating the guess work users have to perform

when the similarity threshold is unknown

beforehand. An algorithm, top k-join, is proposed to

answer top-k similarity join efficiently. It is based

on the prefix fliteringg principle and employs tight

upper bounding of similarity values of unseen pairs.

Experimental results demonstrate the efficiency of

the proposed algorithm on large-scale real datasets.

The duplicate detection is the process of finding

multiple records in a dataset that represents the

same real-world entity. Due to the enormous costs

of an exhaustive comparison, typical algorithms

select only promising record pairs for comparison.

Two competing approaches are blocking and

windowing. Blocking methods partition records

into disjoint subsets, while windowing methods, in

particular the Sorted Neighborhood Method, slide a

window over the sorted records and compare

records only within the window. We present a new

algorithm called Sorted Blocks in several variants,

which generalizes both approaches. To evaluate

Sorted Blocks, we have conducted extensive

experiments with different datasets. These show

that our new algorithm needs fewer comparisons to

find the same number of duplicates.

The field of transitive relations focuses mainly on

dense, Boolean, undirected relations. With the

emergence of a new area of intelligent retrieval,

where sparse transitive fuzzy ordering relations are

utilized, existing theory and methodologies need to

be extended, as to cover the new needs. This paper

discusses the incremental update of such fuzzy

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 3

binary relations, while focusing on both storage and

computational complexity issues. Moreover, it

proposes a novel transitive closure algorithm that

has a remarkably low computational complexity

(below O(n2)) for the average sparse relation; such

are the relations encountered in intelligent retrieval.

The data cleaning or data scrubbing refers to the

process of resolving such identification problems in

the data. We distinguish between two types of data

heterogeneity: structural and lexical. Structural

heterogeneity occurs when the fields of the tuples in

the database are structured differently in different

databases. For example, in one database, the

customer address might be recorded in one field

named, say, address, while, in another database, the

same information might be stored in multiple fields

such as street, city, state, and zip code. Lexical

heterogeneity occurs when the tuples have

identically structured fields across databases, but

the data use different representations to refer to the

same real-world object. In this paper, we focus on

the problem of lexical heterogeneity and survey

various techniques which have been developed for

addressing this problem.

We focus on the case where the input is a set of

structured and properly segmented records, i.e., we

focus mainly on cases of database records. Hence,

we do not cover solutions for various other

problems, such as that of mirror detection, in which

the goal is to detect similar or identical Web pages.

Also, we do not cover solutions for problems such

as anaphora resolution in which the problem is to

locate different mentions of the same entity in free

text.

We should note that the algorithms developed for

mirror detection or for anaphora resolution are often

applicable for the task of duplicate detection.

Techniques for mirror detection have been used for

detection of duplicate database records and

techniques for anaphora resolution are commonly

used as an integral part of de duplication in

relations that are extracted from free text using

information extraction systems.

III.SYSTEM METHODOLOGY

A. INPUT PARAMETERS (D, K, W, I, N)

In this input for the Algorithm PSNM is selected.

The algorithm takes five input parameters: D is a

reference to the data, which has not been loaded

from disk yet. The sorting key K defines the

attribute or attributes combination that should be

used in the sorting step. W specifies the maximum

window size, which corresponds to the window size

of the traditional sorted neighborhood method.

When using early termination, this parameter can

be set to an optimistically high default value.

Parameter I defines the enlargement interval for the

progressive iterations. N is the number of records.

B. INPUT PARAMETERS (D, K, R, S, N)

 In this input for the Algorithm PB is

selected. The algorithm takes five input parameters:

D is a reference to the data, which has not been

loaded from disk yet. The sorting key K defines the

attribute or attribute combination that should be

used in the sorting step. R specifies the maximum

block range, S Block Size and N Total No. of

Records. When using early termination, this

parameter can be set to an optimistically high

default value.

IV. PROGRESSIVE SORTED

NEIGHBORHOOD METHOD

ALGORITHM

The PSNM algorithm calculates an appropriate

partition size pSize, i.e., the maximum number of

records that fit in memory, using the pessimistic

sampling function calcPartitionSize(D) in Line 2:

If the data is read from a database, the function can

calculate the size of a record from the data types

and match this to the available main memory.

Otherwise, it takes a sample of records and

estimates the size of a record with the largest values

for each field.

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 4

Require: dataset reference D, sorting key K,

window size

W, enlargement interval size I, number of records

N

1: procedure PSNM(D, K, W, I, N)

2: pSize calcPartitionSize(D)

3: pNum N �Size /W þ 1Þ de

4: array order size N as Integer

5: array recs size pSize as Record

6: order sortProgressive(D, K, I, pSize, pNum)

7: for currentI 2 to W I de do

8: for currentP 1 to pNum do

9: recs loadPartition (D, currentP)

10: for dist 2 range(currentI, I, W) do

11: for i 0 to recs jj � dist do

12: pair recs½i� recs[i] � dist+hi

13: if compare(pair) then

14: emit(pair)

15: lookAhead(pair)

In Line 3, the algorithm calculates the number of

necessary partitions pNum, while considering a

partition overlap of W - 1 records to slide the

window across their boundaries. Line 4 defines the

order-array, which stores the order of records with

regard to the given key K. By storing only record

IDs in this array, we assume that it can be kept in

memory. To hold the actual records of a current

partition, PSNM declares the recs-array in Line 5.

In Line 6, PSNM sorts the dataset D by key K.

The sorting is done using progressive sorting

algorithm. Afterwards, PSNM linearly increases the

window size from 2 to the maximum window size

W in steps of I (Line 7). In this way, promising

close neighbors are selected first and less promising

far-away neighbors later on. For each of these

progressive iterations, PSNM reads the entire

dataset once. Since the load process is done

partition-wise, PSNM sequentially iterates (Line 8)

and loads (Line 9) all partitions. Require: dataset

reference D, key attribute K, maximum block range

R, block size S and record number N

1: procedure PB(D, K, R, S, N)

2: pSize calcPartitionSize(D)

3: bPerP pSize S bc

4: bNum N S de

5: pNum bNum bPerP de

6: array order size N as Integer

7: array blocks size bPerP as Integer Record� hi

8: priority queue bPairs as Integer Integer Integer

 hi

9: bPairs 1 1 hi ... bNum bNum hi fg

10: order sortProgressive(D, K, S, bPerP, bPairs)

11: for i 0 to pNum � 1 do

12: pBPs get(bPairs, i � bPerP,(i þ 1) � bPerP)

13: blocks loadBlocks(pBPs, S, order)

14: compare(blocks, pBPs, order)

15: while bPairs is not empty do

16: pBPs fg

17: bestBPs takeBest(bPerP 4 bc, bPairs, R)

18: for bestBP 2 bestBPs do

19: if bestBP[1] �bestBP[0] R then

20: pBPs pBPs [extend(bestBP)

21: blocks loadBlocks(pBPs, S, order)

22: compare(blocks, pBPs, order)

23: bPairs bPairs [pBPs

24: procedure compare(blocks, pBPs, order)

25: for pBP 2 pBPs do

26: dPairs cNum hi comp(pBP, blocks, order)

27: emit(dPairs)

28: pBP[2] dPairs jj / cNum

To process a loaded partition, PSNM first iterates

overall record rank-distances dist that are within the

current window interval current I. For I= 1 this is

only one distance, namely the record rank-distance

of the current main-iteration. In Line 11, PSNM

then iterates all records in the current partition to

compare them to their dist-neighbor. The

comparison is executed using the compare (pair)

function in Line13. If this function returns “true”, a

duplicate has been found and can be emitted.

V.BLOCKING TECHNIQUES

A. Block size.

A block pair inclusive of small blocks defines

best few comparisons. Using such small blocks, the

PB algorithm carefully selects the most promising

comparisons and avoids many much less promising

comparisons from a much wider neighbourhood.

However, block pairs based on small blocks can't

characterize the reproduction density in their

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 5

community properly, because they constitute a too

small pattern. A block pair inclusive of large blocks,

in evaluation, may additionally define too many,

less promising comparisons, however produces

better samples for the extension step. The block

length parameter S, consequently, trades off the

execution of non-promising comparisons and the

extension satisfactory.

Magpie Sort. To estimate the information’

similarities, the PB algorithm make use of an order

of data. As inside the PSNM algorithm, this order

may be calculated using the revolutionary Magpie

Sort algorithm. Since each generation of this

algorithm provides a wonderfully sorted subset of

data, the PB algorithm can immediately use this to

execute the preliminary comparisons.

B. Attribute Concurrent PSNM

The simple idea of AC-PSNM is to weight and

re-weight all given keys at runtime and to

dynamically transfer among the keys based totally

on intermediate effects. Thereto, the set of rules

pre-calculates the sorting for every key attribute.

The pre-calculation additionally executes the first

modern iteration for every key to count number the

wide variety of outcomes. Afterwards, the

algorithm ranks the distinct keys through their

result counts. The pleasant key's then decided on to

process its next generation. The variety of effects of

this iteration can trade the ranking of the modern-

day key so that some other key might be selected to

execute its next new release.

C. EXPERIMENTAL RESULTS

Progressive replica detection is a good and handy

solution for many facts cleaning use cases. In

cooperation with plista agency presenting target-

oriented on line commercial, we used our

innovative algorithms to stumble on personality in

web server log data. A persona is a user with a

certain hobby region. Hence, the same person is and

must be reflected through one-of-a-kind persona, if

her interests vary. Compared to the quantity of

entity duplicates in conventional statistics cleaning

responsibilities, to expect many more persona

duplicates in this dataset. The desk suggests

experimental consequences for innovative

reproduction detection set of rules for PSNM - PB

concurrent and parallel method. The desk contains

wide variety of information set, concurrent PSNM-

PB dataset and Parallel PSNM-PB dataset info are

display.

S.NO DATASET

S

CONCURREN

T

PSNM-PB

(Number of

Datasets)

PARALLE

L

PSNM-PB

(Number of

Datasets

1 100 30 50

2 200 75 83

3 300 85 93

4 400 97 97

5 500 105 105

Table 5.1 Concurrent-Parallel Approach for

PSNM-PB

Concurrent-Parallel Approach for PSNM-

PB

0

20

40

60

80

100

120

1 2 3 4 5

Number of Datasets (N)

N
u

m
b

e
r

o
f

D
a
ta

s
e
t

C
o

u
n

t

(N
)

CONCURREN

T PSNM-PB

(Number of

Datasets)

PARALLEL

PSNM-PB

(Number of

Datasets

Fig 5.2 Concurrent-Parallel Approach for

PSNM-PB

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 6

VI.CONCLUSION

Through this challenge, the performance of

duplication detection is increased better than

current system. This mission delivered the

revolutionary taken care of community approach

and progressive blockading. Both algorithms boom

the performance of duplicate detection for

conditions with restrained execution time; they

dynamically change the ranking of contrast

candidates primarily based on intermediate

consequences to execute promising comparisons

first and much less promising comparisons later.

The challenge proposed a unique quality measure

for progressiveness that integrates seamlessly with

present measures. It uses more than one type keys

concurrently to interleave their modern iterations.

By analyzing intermediate outcomes, each method

dynamically rank the extraordinary sort keys at

runtime, considerably easing the key selection

hassle. It is believed that almost all the system

targets which have been planned on the

commencements of the software program

improvement were net with and the implementation

method of the venture is completed.

A trial run of the device has been made and is

giving desirable results the methods for processing

is straightforward and normal order. The technique

of preparing plans been overlooked out which is

probably considered for in addition amendment of

the application.

VII.REFERENCES

[1] S. E.Whang, D. Marmaros, and H. Garcia-Molina, “Pay-as-you-go

entity resolution,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 5,pp.

1111–1124, May 2012.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate

record detection: A survey,” IEEE Trans. Knowl. Data Eng., vol. 19, no.

1, pp. 1–16, Jan. 2007.

[3] F. Naumann and M. Herschel, An Introduction to Duplicate Detection.

San Rafael, CA, USA:Morgan & Claypool, 2010.

[4] H. B. Newcombe and J. M. Kennedy, “Record linkage: Making

maximum use of the discriminating power of identifying information,”

Commun. ACM, vol. 5, no. 11, pp. 563–566, 1962.
[5] �M. A. Hern andez and S. J. Stolfo, “Real-world data is dirty: Data

cleansing and the merge/purge problem,” Data Mining Knowl.

Discovery, vol. 2, no. 1, pp. 9–37, 1998.
[6] X. Dong, A. Halevy, and J.Madhavan, “Reference reconciliation in

complex information spaces,” in Proc. Int. Conf. Manage. Data, 2005,

pp. 85–96.

[7] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller, “Framework for

evaluating clustering algorithms in duplicatedetection,” Proc. Very

Large Databases Endowment, vol. 2, pp. 1282–1293, 2009.

[8] O. Hassanzadeh and R. J. Miller, “Creating probabilistic databases from

duplicated data,” VLDB J., vol. 18, no. 5, pp. 1141–1166, 2009.

[9] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg, “Adaptive
windows for duplicate detection,” in Proc. IEEE 28thInt. Conf. Data

Eng., 2012, pp. 1073–1083.

[10] S. Yan, D. Lee,M.-Y. Kan, and L. C. Giles, “Adaptive sorted neigh-
borhood methods for efficient record linkage,” in Proc. 7th ACM/IEEE

Joint Int. Conf. Digit. Libraries, 2007, pp. 185–194.

[11] J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and A.

Halevy, “Web-scale data integration: You can onlyafford to pay as you

go,” in Proc. Conf. Innovative Data Syst.Res., 2007.

