
 International Journal of Computer Techniques -– Volume 8 Issue 6, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 1

Adaptive Reinforcement Learning in AI-OCR Invoice Processing

for the Digital Age
Avinash Malladhi*

*NewYork , USA

Email: M.avinash8585@gmail.com

--************************----------------------------------

Abstract:

 The rapidly advancing domain of Reinforcement Learning (RL) presents revolutionary opportunities

when integrated with AI-OCR systems, particularly in the context of invoice processing. This

comprehensive exploration delves into the intricacies of both RL and AI-OCR, highlighting their individual

strengths and the unprecedented potential they offer when combined. As invoices come in diverse formats,

the adaptive nature of RL allows AI-OCR systems to learn and extract pertinent data with heightened

efficiency continuously. Furthermore, this integration showcases versatility, extending its promising

applications to other document genres, such as contracts and research papers. By amalgamating

contemporary RL strategies, from hybrid models to meta-learning, AI-OCR systems stand to gain

significantly in terms of accuracy, adaptability, and overall performance. This paper underscores the

transformative essence of merging RL with AI-OCR, pointing towards a future where document processing

achieves unmatched levels of precision and automation..

Keywords — Reinforcement Learning, Optical Character Recognition , Invoicing, Artificial

Intelligence, Accounts Payable.

--************************----------------------------------

I. INTRODUCTION

In recent years, artificial intelligence (AI) and

machine learning (ML) technologies have

burgeoned, providing innovative solutions across a

plethora of domains. One specific area of interest

that has seen significant advancement is Optical

Character Recognition (OCR), where traditional

algorithms have been complemented and, in many

cases, superseded by AI-driven methods [1]. A

crucial application of AI-OCR is invoice processing,

an integral component of financial and procurement

operations in businesses.

OCR has historically been a domain that depended

largely on image-processing techniques combined

with deterministic algorithms [2]. The integration of

AI methodologies, particularly deep learning, has

enhanced the accuracy and efficiency of OCR

systems, which can recognize diverse fonts and

layouts even in noisy conditions [3]. Nevertheless,

the dynamic nature of invoices, with their varying

formats, inconsistent layouts, and differing

terminologies, poses unique challenges [4].

This is where Reinforcement Learning (RL), a sub-

field of machine learning concerned with how agents

ought to take actions in an environment to maximize

some notion of cumulative reward, plays a pivotal

role [5]. The process of learning through feedback,

much like training a dog to perform tricks, aids in

dynamically identifying the regions of interest in an

invoice, optimizing the sequence of data extraction,

and continuously refining the extraction strategy

based on feedback from processed documents [6]. In

essence, RL-driven OCR solutions adapt and evolve,

mirroring the dynamic nature of the invoices they

process.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 2

While the marriage of RL with AI-OCR for invoice

processing seems promising, it's crucial to dive deep

into its intricacies, evaluate the associated challenges,

and understand its practical implications.

II. REINFORCEMENT LEARNING (RL)

Reinforcement Learning (RL) is an integral sub-

domain of machine learning, concerned with the

decision-making processes of agents in each

environment. Unlike supervised and unsupervised

learning paradigms, RL is predicated on the

feedback loop between an agent's actions and the

rewards or penalties these actions engender [1]. This

feedback mechanism facilitates the agent in refining

its strategies and decisions over time to maximize a

cumulative reward.

A. Central to the understanding of RL are several key

terminologies:

1) Agent: The decision-maker or learner. In a typical RL

setting, the agent continually interacts with its

surroundings and learns from the consequences of its

actions [2].

2) Environment: The external system with which the

agent interacts. It responds to the agent's actions,

transitions to new states, and offers rewards as

feedback [3].

3) States: A representation of the current scenario or

configuration in which the agent finds itself within the

environment. A state can be anything from a single

data point to a complex configuration of numerous

variables [4].

4) Actions: The set of all possible moves or decisions the

agent can make. In each state, the agent selects an

action based on a policy, which is a mapping from

states to actions [5].

5) Rewards: After taking an action, the agent receives a

reward (or penalty) from the environment. The

primary objective of the agent is to maximize the

expected cumulative reward over time [6].

6) Policy: A strategy that the agent employs to determine

the next action based on the current state. It can be

deterministic or stochastic [7].

Understanding the intricate interplay between these

concepts is pivotal for effective implementation and

optimization of RL-based systems. By mastering the

feedback loop, agents can adapt and evolve their

strategies to respond effectively to complex,

dynamic environments, ranging from game playing

to real-world applications like robotics, finance, and

healthcare [8].

III. COMPARISON WITH OTHER MACHINE

LEARNING PARADIGMS

Reinforcement Learning (RL) is a unique learning

paradigm, but to understand its niche, it is essential

to contrast it with its siblings in the machine learning

family: Supervised Learning and Unsupervised

Learning.
A. Supervised Learning (SL):

1) Nature: SL involves learning a function that maps

input to output based on labeled training examples [9].

2) Feedback: The system learns from explicit feedback,

i.e., the labeled training data [10].

3) Use Cases: SL is typically used for tasks such as

regression and classification. Examples include

predicting house prices or categorizing emails as spam

or not spam.

4) Comparison with RL: Unlike SL, RL does not have

labeled data or explicit correct answers. Instead, it

learns from rewards or penalties over time [1].

B. Unsupervised Learning (UL):

1) Nature: UL concerns identifying underlying patterns

or structures in data without explicit labels [11].

2) Feedback: There isn’t any explicit feedback. The goal

is to learn representations or structures like clusters

[12].

3) Use Cases: UL techniques, like clustering or

dimensionality reduction, are used to group similar

data or reduce data's dimensions.

4) Comparison with RL: While UL seeks to find

structures in data, RL focuses on maximizing rewards

through interactions. RL has an objective (rewards)

guiding its learning, while UL often doesn’t have such

direct objectives [13].

C. Semi-Supervised and Active Learning:

1) Nature: These are intermediate forms of learning,

leveraging both labeled and unlabeled data or

interactively querying the user/teacher for labels [14].

2) Comparison with RL: While there's an element of

interaction in active learning, it lacks the continuous

adaptability and decision-making process present in L,

which learns from the consequences of its actions

rather than queried labels [15].

D. Self-Supervised Learning:

1) Nature: A paradigm where labels are automatically

generated from the input data, turning an unsupervised

task into a supervised one [16].

2) Comparison with RL: Though both methods can learn

without explicit human-provided labels, RL

distinguishes itself by its action-reward mechanism,

while self-supervised learning revolves around

predicting parts of the input from other parts [17]

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 3

In essence, while all these paradigms aim at learning

from data, their methodologies, feedback

mechanisms, and objectives differ. RL, with its focus

on sequential decision-making and learning through

trial and error, offers unique advantages in dynamic

environments where immediate feedback may not

always denote long-term success [18].

IV. WHY RL IS SUITABLE FOR AI-OCR

APPLICATIONS

Reinforcement Learning (RL) in AI-OCR (Optical

Character Recognition) applications can be a game-

changer, particularly for complex tasks that involve

sequence prediction, decision-making, and

adaptability to variations in input data.

Reasons why RL is particularly suitable for AI-OCR

applications:

A. Sequential Decision-Making:

1) OCR Challenges: OCR, especially for documents like

invoices or forms, often requires processing sequences

of characters, words, and structures, making decisions

at each step on what character or word is being

identified.

2) RL Advantage: RL inherently operates in an

environment of sequential decision-making. Given the

sequence-like nature of reading text, RL can effectively

learn policies to predict the next character or word in a

sequence.

B. Adaptability to Varied Inputs:

1) OCR Challenges: Invoices, forms, and other

documents come in varied formats, fonts, and layouts.

A static OCR model might not perform consistently

across all these variations.

2) RL Advantage: Through its reward mechanism, RL

can adaptively learn optimal strategies to process

varied document types, updating its policy based on

feedback from successes or errors.

C. Handling Ambiguities:

1) OCR Challenges: Characters or words might be

smeared, faded, or overlapped in some documents.

This can lead to ambiguities in recognition.

2) RL Advantage: By considering the broader context and

the sequence of readings, an RL agent can make

educated decisions in ambiguous situations, optimizing

for the overall correctness of the document rather than

just isolated characters or words.

D. Continuous Learning and Improvement:

1) OCR Challenges: New document formats, fonts, or

layouts can emerge over time, making it challenging

for static models to keep up.

2) RL Advantage: RL systems can continuously learn and

adapt. As they process more documents and encounter

more variations, they can refine their policies to

improve accuracy and reduce errors.

E. Incorporating Domain Knowledge:

1) OCR Challenges: Some documents might contain

domain-specific jargons, terminologies, or patterns.

Recognizing and understanding these patterns is

crucial.

2) RL Advantage: By defining rewards that incorporate

domain knowledge (e.g., recognizing a specific invoice

format or medical jargon), RL can be trained to be more

sensitive and accurate for domain-specific OCR tasks.

F. Integration with Other Modules:

1) OCR Challenges: Often, OCR is just one part of a

broader system, which might include modules for

document classification, data extraction, or data

validation.

2) RL Advantage: RL can be integrated with these

modules in a holistic manner. For instance, after

recognizing text, an RL agent can decide whether to

send the document for validation or classify it into a

specific category based on its content.

Given these advantages, it's evident that RL offers a

robust, adaptable, and continuously improving

framework for OCR applications. Its principles align

well with the challenges faced in OCR, making it a

promising approach for future AI-OCR systems.

V. AI-OCR: AN OVERVIEW

Optical Character Recognition (OCR) has been a

significant field of research since the digital age

began. Traditional OCR systems were rule-based

and relied heavily on fixed templates and fonts.

However, with the advent of artificial intelligence

(AI) and deep learning, OCR has seen a paradigm

shift in its capabilities, accuracy, and applicability.

This section delves into the essence of AI-OCR, its

evolution, and its distinct advantages.

A. Evolution of OCR

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 4

1) Traditional OCR:

 The early days of OCR were characterized by systems that

Relied on fixed templates. Required clear and high-quality

images and had difficulty with cursive or overlapping text. It

depended largely on rule-based algorithms and were sensitive

to noise and distortions [19].

2) AI-Driven OCR:

 With AI, OCR underwent a transformative evolution the

optical recognition moved from rule-based to data-driven

methodologies. It incorporated neural networks, especially

Convolutional Neural Networks (CNNs), for image recognition

[20] and leveraged Recurrent Neural Networks (RNNs) and

Long Short-Term Memory networks (LSTMs) for sequence

prediction in textual data [21] and demonstrated adaptability to

varied fonts, layouts, and noisy backgrounds.

B. AI-OCR Methodology

1) Image Preprocessing works by enhancing image

quality, noise reduction, and binarization and

utilizing algorithms like adaptive thresholding to

improve contrast and clarity [22]. Binarization

converts the image to black and white.

def binarize(image):

 threshold_value, binary_image =

cv2.threshold(image, 128, 255,

cv2.THRESH_BINARY_INV +

cv2.THRESH_OTSU)

 return binary_image

2) Feature Extraction uses CNNs to detect essential

features in the text image like edges, curves, and

other character-specific traits [23] and uses

pooling and normalization to ensure scale and

rotation invariance.

3) Sequence Prediction and Recognition it the

technique which works by leveraging RNNs and

LSTMs to recognize sequences of characters and

words, understanding the context and

relationships in textual data [24] there by

addressing challenges like cursive writing or

closely spaced characters.

4) Post-processing: In post processing error

correction using dictionaries or language models

is performed and formatting the extracted data as

per requirements.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 5

C. Advantages of AI-OCR

1) Adaptability in modern AI-OCR solutions allows for the

seamless handling of various fonts, layouts, and document

structures without requiring explicit programming. These

solutions also possess a remarkable learning capacity,

enabling them to evolve over time by processing more data

and adjusting to new patterns and subtle differences.

Furthermore, they offer compatibility advantages, as they

can be effortlessly integrated with other AI systems to

perform tasks such as document classification, data

analysis, and natural language processing. One of their

standout features is their efficiency and speed. Modern AI-

OCR systems can swiftly process enormous volumes of

documents, achieving a notable enhancement in efficiency,

as evidenced by a 25% improvement[25].

D. Applications of AI-OCR

Beyond just recognizing text, AI-OCR has been

utilized in various practical applications. Businesses

employ it for invoice processing and data extraction.

Historians and researchers use it to read and digitize

age-old documents or manuscripts. In the realm of

traffic and security, it plays a pivotal role in license

plate recognition. Additionally, postal systems and

banks have adopted it for recognizing handwriting.

E. Challenges in Invoice Processing

Processing invoices is a critical task for businesses

worldwide, ensuring efficient financial management

and compliance. However, with the myriad of

formats, layouts, and additional complexities

presented by invoices, automated processing poses a

significant challenge. This section will explore the

primary challenges faced in invoice processing,

emphasizing the variety of invoice formats and

layouts.
1) Variety in Invoice Formats and Layouts

1) Heterogeneous Templates: Different vendors or

businesses often have their unique invoice templates.

Even within the same company, various departments

or branches might use slightly different formats [27].

2) Dynamic Content Placement: The placement of

content, such as the invoice date, total amount, or line

items, can vary considerably between invoices, even

if other elements remain consistent [28].

3) Multiple Languages and Currencies: Global

businesses deal with invoices in various languages and

currencies, adding another layer of variability and

complexity.

4) Design Elements and Logos: Invoices often contain

decorative elements, company logos, or watermarks,

which can interfere with straightforward OCR

processing.

2) Textual Variabilities

1) Fonts and Sizes: Invoices may use a variety of fonts,

sizes, and styles (bold, italic, etc.), affecting

recognition accuracy.

2) Field Labels: Terminologies can differ. For instance,

"Total Amount" might be labeled as "Total Due,"

"Amount Payable," etc. on different invoices [29].

3) Annotations and Handwritten Notes: Invoices might

have handwritten notes, corrections, or annotations,

posing challenges for standard OCR systems.

3) Quality Concerns

1) Image Quality and Resolution: Scanned invoices

might suffer from low resolution, blurring, or noise,

impacting recognition accuracy.

2) Physical Wear and Tear: Physical invoices can have

smudges, folds, or tears that interfere with digital

processing.

3) Differences in scanning equipment or software can

lead to variations in digital image quality.

4) Data Validation and Verification

1) Accuracy Assurance: It's crucial to ensure that

extracted data matches the actual invoice content,

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 6

especially for critical fields like amounts, dates, and

vendor details.

2) Integrity Checks: Some invoices might have security

features or checksums to ensure data integrity, which

automated systems need to validate.

5) Integration and Interoperability

1) Data Integration: Extracted data needs to be

integrated with existing financial systems or

databases, which may have their formats or schemas

[30].

2) Compatibility solutions need to be compatible with

various IT infrastructures and software used by

businesses. Assistive technologies for visually

impaired individuals [26].

VI. THE MARRIAGE OF RL AND AI-OCR: A

CONCEPTUAL FRAMEWORK

The convergence of Reinforcement Learning (RL)

with Artificial Intelligence-based Optical Character

Recognition (AI-OCR) offers a promising avenue

for automating and enhancing the processing of

textual data from complex documents like invoices.

This section provides a conceptual framework

detailing how the integration can pave the way for

sophisticated, adaptive, and efficient OCR systems.

A. The Rationale for Integration

1) Adaptability: As RL thrives on learning optimal

strategies from interactions, it can enable AI-OCR

systems to adapt to varied invoice formats over time

without explicit reprogramming [31].

2) Optimization: RL can help in the fine-tuning of OCR

processes by maximizing rewards, such as recognition

accuracy, and minimizing penalties like errors or

mismatches [32].

3) Real-time Feedback: By incorporating a feedback

loop, RL can iteratively improve the OCR system

based on real-world performances.

B. Key Components of the Framework

1) Agent: The AI-OCR system acts as the RL agent,

making decisions (e.g., character recognition, layout

parsing) based on the current state (the invoice's

content) [33].

2) Environment: Represents the diverse set of invoices

that the system encounters, each presenting unique

challenges and data.

3) Actions: Decisions made by the AI-OCR system, such

as text recognition, segmentation choices, or data

extraction decisions.

4) Rewards: Feedback on the agent's actions. Positive

rewards for correct recognitions and negative

penalties for errors or misinterpretations.

5) States: Current context or portion of the invoice being

processed. This could be a particular section, line item,

or block of text.

C. Strategic Application of RL in AI-OCR

1) Template Adaptation: RL can be utilized to

dynamically adapt to various invoice templates,

learning to recognize and process new formats

efficiently.

2) Sequential Decision Making: Given the sequential

nature of textual data, RL can decide the optimal order

of processing various sections of an invoice for

enhanced accuracy [34].

3) Error Handling: Through RL, the system can learn

optimal strategies to handle or correct recognition

errors based on historical data and feedback.

4) Parameter Tuning: Hyperparameters of the

underlying OCR neural networks can be optimized in

real-time based on rewards and penalties, enhancing

system performance.

D. Challenges and Considerations

1) Sparse Rewards: In many real-world scenarios,

feedback (rewards) might be infrequent or delayed,

making the learning process challenging.

2) Exploration vs. Exploitation: The system must

balance between exploring new strategies for

processing invoices and exploiting known successful

methods [35].

3) Scalability: As the system encounters more varied

invoice formats, ensuring that the RL model scales

effectively will be crucial.

4) Data Privacy and Security: Ensuring that the RL-

based OCR system maintains the confidentiality and

integrity of the processed invoices is paramount.

In essence, integrating RL with AI-OCR is not just

about enhancing recognition accuracy. It's about

building systems that are adaptive, resilient, and

continuously evolving. By learning from each

interaction and feedback, such a framework

promises a future where OCR systems can handle the

vast variability and complexity of real-world

documents with unparalleled proficiency.

VII. HOW RL CAN ADDRESS THE DYNAMIC NATURE

OF INVOICE LAYOUTS

Invoices come in numerous formats and designs,

varying between vendors, industries, regions, and

even within individual companies over time. The

dynamic nature of these layouts presents a

significant challenge for traditional Optical

Character Recognition (OCR) systems.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 7

Reinforcement Learning (RL) offers an adaptable

approach to tackle this dynamism. Here's an in-depth

exploration of how RL can address the ever-

changing nature of invoice layouts:
A. Adaptability Through Interaction

1) Learning Through Experience: Unlike traditional

rule-based systems, RL agents improve through

interactions. Each processed invoice acts as a learning

opportunity, allowing the system to adapt to new

layouts [36].

2) Feedback-driven Optimization: By incorporating

feedback loops, RL systems can correct mistakes and

fine-tune their strategies. For instance, if a certain

layout is misinterpreted, the system will receive a

negative reward, pushing it to adjust its approach for

future similar invoices.

B. Template-Free Processing

1) Beyond Pre-defined Templates: RL can move AI-

OCR systems away from relying solely on pre-defined

templates. Instead of manually defining layouts, the

RL agent can learn optimal strategies for processing

various layouts autonomously [37].

2) Generalization Across Layouts: By learning common

patterns and structures across various invoices, RL

systems can generalize and effectively process new,

unseen layouts.

C. Sequential Decision-making

1) Dynamic Parsing: RL can determine the optimal

sequence for processing sections of an invoice. For

instance, identifying the vendor details before parsing

line items could aid in better contextual understanding

[38].

2) Stateful Processing: With RL, the OCR system can

maintain a "memory" of previously processed

sections, helping in making informed decisions about

subsequent parts of the invoice.

D. Exploration vs. Exploitation

1) Balancing Known & Unknown: RL inherently deals

with the exploration-exploitation dilemma. For

invoice processing, this means balancing between

processing known layouts (exploitation) and

exploring strategies for unfamiliar ones (exploration)

[39].

2) Continuous Learning: As new invoice layouts are

introduced, the RL system can explore these layouts

and then exploit the learned strategies once they're

deemed effective.

E. Scalability and Continuous Improvement

1) Online Learning: RL can engage in online learning,

continuously updating its strategies as more invoices

are processed, ensuring the system remains updated

with evolving layouts [40].

2) Transfer Learning: Techniques from RL can be used

to transfer knowledge from known invoice layouts to

new ones, speeding up the learning process for novel

formats.

The dynamism of invoice layouts, which poses a

challenge for traditional systems, becomes an

opportunity for improvement in an RL-based

framework. RL empowers AI-OCR systems to be

fluid, adaptable, and self-improving, ensuring they

remain effective in the face of the diverse and

evolving landscape of invoice designs.

VIII. DESIGNING AN RL AGENT FOR AI-OCR TASKS

Incorporating Reinforcement Learning (RL) into

Artificial Intelligence-based Optical Character

Recognition (AI-OCR) systems necessitates

designing an RL agent adept at handling the nuances

and challenges of text extraction, particularly from

complex documents like invoices.
A. Problem Formulation

1) State Definition: The state “s” can be represented as

a matrix capturing pixel values of the region of the

invoice being processed, along with contextual meta-

data, like previously recognized text.

2) Action Definition: Actions “a” can be varied:

identifying a particular region of the document (e.g.,

header, line item), recognizing characters, or deciding

the order in which to parse sections.

3) Reward Signal: A reward “r” is granted based on the

correctness of text extraction: positive for correct

extractions and negative for errors. Additional

rewards/penalties can be set for efficiency, such as

processing time.

B. Neural Network Architecture

1) Input Layer:The input will be a processed image

segment (e.g., a convolutional layer output) combined

with contextual data.

2) Convolutional Layers: Extracts features from the

invoice image segments. This assists in understanding

textual patterns and layouts [41].

3) Recurrent Layers i.e. “LSTM” : Help in capturing

sequential data and temporal dependencies, which is

crucial for understanding the context and order of

textual data [42].

4) Output Layer: This represents Q-values (for Q-

learning-based agents) or policy probabilities (for

policy gradient methods). Each node corresponds to

potential actions the agent can take.

C. Exploration Strategy

1) Epsilon-Greedy: Initially, the agent explores invoice

processing strategies at random, but as it learns, it

increasingly relies on its policy to make decisions.

2) Decay Strategies: Decrease the exploration rate

(epsilon) over time, ensuring the agent exploits its

learned knowledge more as it becomes experienced.

D. Learning Algorithm

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 8

1) Deep Q-Networks (DQN): Suitable for situations with

a vast action space. The network approximates the Q-

function, guiding the agent on the expected reward for

actions in given states [43].

2) Policy Gradient Methods: Directly optimizes the

policy without needing a value function. This can be

beneficial when the action space is continuous or

when modeling the action's exact probability

distribution is vital [44].

E. Training Process

1) Curriculum Learning: Begin training on simpler

invoices, gradually introducing more complex

layouts. This step-wise learning can improve

convergence rates.

2) Transfer Learning: Use pre-trained models on similar

OCR tasks to jumpstart the learning process, adapting

the final layers to the specific AI-OCR tasks at hand.

3) Memory Replay: Store previous experiences and

sample them in mini-batches to break the correlation

between consecutive samples, stabilizing the learning

process [45].

F. Evaluation Metrics

1) Recognition Accuracy: Measures the correctness of

text extraction compared to the ground truth.

2) Processing Time: Evaluate the efficiency of the agent

in extracting data from invoices.

3) Generalization: Test the agent on unseen invoice

layouts to determine its adaptability.

Designing an RL agent for AI-OCR tasks is a multi-

faceted endeavour. The design choices should align

with the specific challenges of the OCR domain

while leveraging the adaptability and continuous

learning strengths of RL. When effectively designed

and trained, such an agent holds the promise of

revolutionizing the way textual data is extracted

from diverse and dynamic documents.

IX. THE ENVIRONMENT: DEFINING STATES,

ACTIONS, AND REWARDS SPECIFIC TO OCR

In the domain of Reinforcement Learning (RL), the

environment plays a crucial role, acting as the

external entity with which the RL agent interacts. For

AI-OCR applications, a precise definition of the

environment's components - states, actions, and

rewards - is essential for effective learning and

decision-making. Here’s a detailed specification of

these components tailored for OCR tasks:
A. States

State captures the current situation or context the

agent finds itself in. For an OCR task, states can be

derived from the content of the document and where

the agent is currently focusing:
1) Image Segment: A matrix representation of pixel

values where the agent is currently analyzing. This

could be an entire invoice, a specific section, or even

individual characters, depending on the granularity

chosen [46].

2) Historical Context: Previously recognized characters

or words can provide context. For instance,

recognizing a currency symbol might suggest that the

subsequent characters represent an amount.

3) Positional Information: Coordinates or a relative

position indicating where on the page the agent is

currently focusing. This helps in navigation and

determining context.

4) Metadata: Information about the document, like its

source, date of creation, or file type, can provide

additional context.

B. Actions
Actions dictate what steps the agent should take

next. In an OCR setting, actions can be:
1) Move Focus: Shift the attention region to a different

area of the document. Possible directions could be up,

down, left, right, or even jumps to specific sections

[47].

2) Extract Character/Word: Identify and extract a

character or word in the current focus region.

3) Classify Segment: Label the currently focused

segment as a specific type (e.g., header, date, line

item).

4) Skip: Decide to ignore the current segment if deemed

non-essential or too challenging.

5) Request Additional Processing: For unclear sections,

the agent might decide to preprocess a segment

further, like increasing contrast or denoising.

C. Rewards
Rewards provide feedback to the agent,

indicating the consequences of its actions:
1) Correct Extraction: A positive reward is given when

the agent correctly identifies and extracts text from a

segment, as matched against a ground truth [48].

2) Incorrect Extraction: A negative reward for errors,

which can vary in magnitude depending on the

severity or impact of the mistake.

3) Efficiency Bonus/Penalty: Additional rewards or

penalties based on the time taken for extraction.

Faster, correct extractions get bonuses, while slow

processing might incur penalties.

4) Classification Reward: If the agent correctly

classifies a segment (e.g., recognizing a section as an

address), it receives a reward.

5) Skip Penalty: A mild penalty for skipping sections to

ensure the agent doesn’t overly avoid challenging

segments.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 9

The meticulous definition of states, actions, and

rewards is pivotal for the success of RL in OCR. By

accurately capturing the intricacies of the OCR

process in these components, we can design an RL

agent that is both effective and efficient in

processing documents.

X. RL STRATEGIES FOR IMPROVED INVOICE DATA

EXTRACTION

1) Deep Q-Learning for Adaptive Template Recognition:

Q-learning is a quintessential model-free

reinforcement learning algorithm that seeks the

optimal action-selection policy for any given finite

Markov decision process. Its name, derived from

the term "quality," quantifies the expected reward of

an action within a state while abiding by the

optimal policy. In recent years, a synthesis of Q-

learning with neural networks birthed the Deep Q-

Network (DQN). This integration permits the Q-

value function approximation by neural networks,

making it adept at grappling with environments

boasting expansive state spaces, such as the

intricate realm of OCR.

Two significant enhancements have fortified DQN's

learning process: Experience Replay and Target

Networks. Experience replay ingeniously stashes

past experiences, subsequently decoupling

consecutive steps to bolster the algorithm's stability.

In parallel, target networks offer a steady Q-value

prediction by updating only periodically. Crucial to

the domain of invoice data extraction is the reward

structure. Tailoring feedback by distinguishing

successful recognition from misrecognition or

partial recognition can provide a sharp, precise

compass for the model. Given the depth and

complexity of DQNs, diligent hyperparameter

tuning becomes imperative to unlock their full

potential, especially in the nuanced OCR landscape.

Bellman Equation for Q-values:

Q(s,a)=r+γmaxa′Q(s′,a′)

V_(t+1) (s)=E_π [r+γV_t (s^')|S_t=s]=∑_a

π(a|s)∑_(s^',r) P(s^',r|s,a)(r+γV_t (s^'))

vπ(s) .= Eπ[Gt | St =s]

= Eπ[Rt+1 + γGt+1 | St =s]

= ∑ π(a|s) ∑ s ∑ r p(s 0 , r|s, a) [r +

γEπ[Gt+1|St+1 =s’]

 a∑a π(a|s) ∑ s r p(s’ , r|s, a) [r + γvπ(s) ,

for all s ∈ S,

1) Context: The Bellman equation provides the

foundation for value-based RL. It gives a recursive

relationship for the Q-value of a state-action pair in

terms of the Q-values of the subsequent state.

2) Explanation: Here, Q(s,a) represents the Q-value for

state s and action a. The right side captures the

immediate reward r plus the discounted (by factor γ)

Q-value of the next state ‘s′ for the best possible

action ‘a’

3) Pseudocode:

Initialize replay memory D of size N

Initialize Q-network with random weights w

Initialize target Q-network with weights w^- = w

For episode = 1, M do:

 Initialize state s

 For t = 1, T do:

 Choose action a using epsilon-greedy policy

derived from Q

 Execute action a, observe reward r and new

state s'

 Store (s, a, r, s') in D

 Sample random minibatch from D

 Set Q_target = r for terminal states

 Set Q_target = r + γ max_a' Q(s', a'; w^-) for

non-terminal states

 Update w using gradient descent on (Q_target -

Q(s, a; w))^2

 Every C steps, reset w^- = w

 End For

End For

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 10

1) Explanation: This pseudocode outlines the core

logic behind DQN. The primary goal is to train

the Q-network to approximate the optimal Q-

values.The replay memory, D, stores experiences

to break correlations when learning. Experiences

are tuples of state, action, reward, and the next

state. The epsilon-greedy policy ensures

exploration of the action space. The target Q-

network, updated less frequently, stabilizes

learning by providing consistent target values.

4) Algorithm formulation in the context of adaptive

template recognition: Traditional Q-Learning

approximates the action-value function using a table,

which becomes infeasible for large state or action

spaces. Deep Q-Learning emerged as a solution to

this by approximating the Q-function using deep

neural networks. The objective of DQL is to

minimize the difference between the Q-value

estimates of our neural network and the target Q-

values. This can be described by the loss function:

L(θ)=E(s,a,r,s′)∼U(D)[(r+γmaxa′

Q(s′,a′;θ−)−Q(s,a;θ))
2
]

1) Proof and Derivation: Starting from the

Bellman equation: Q(s,a)=r+γEs′[maxa′Q(s′,a′)

,The expected Q-value for a state-action pair can

be approximated by the right-hand side. In DQL,

we substitute the Q-function with our neural

network approximation: Q(s,a;θ)=r+γmaxa′

Q(s′,a′;θ−) where θ − represents the parameters

of our target network, which is a lagged version

of our primary network. The goal is to

approximate the left-hand side to be as close as

possible to the right-hand side. This leads to the

above-mentioned loss function.

2) Design Choices

1) Experience Replay: One of the major

innovations in DQL is experience replay. It

stores experiences and later samples from

them for training, breaking the temporal

correlation and stabilizing training.

2) Target Network: Another stabilization

technique is the use of a separate, lagged

network to estimate the target Q-values.

3) Hyperparameters:

1) Replay Memory Size: Affects the range of

experiences the agent can learn from. Too

small, and the agent might forget valuable

experiences. Too large, and it might slow

down the learning process due to increased

computational overhead.

2) Batch Size: The number of experiences

sampled from the replay memory for each

training iteration.

3) Learning Rate: Determines the step size of our

neural network updates.

4) Discount Factor γ: This determines the present

value of future rewards. A value close to 1

means the agent values future rewards similarly

to immediate rewards.

5) Update Frequency: How often the primary

network's weights are copied to the target

network.
6) Discussion in the Context of Adaptive Template

Recognition: In the context of OCR and template

recognition, the states could represent the features

extracted from different sections of a document, and

the actions could match these to particular templates.

The Q-value would measure the expected accuracy of

a match.

1) State Representation: Here, the state could be

the features extracted from a document. For

instance, using CNN layers at the beginning of

our deep Q-network can be a suitable choice for

extracting hierarchical features from the input

image or text.

2) Action Space: If the task is to match the content

to one of many possible templates, each template

could be an action. The Q-value would then

represent the confidence in a match.

3) Rewards: A positive reward can be given when a

correct template match is found and negative

otherwise. However, designing this reward

mechanism requires domain expertise.

6) Deep Q-Network Update Rule: Traditional Q-learning

relies on Q-tables, but for large state spaces like in OCR,

Deep Q-Networks (DQN) generalize the Q-values using

neural networks. The target Q-value Qtarget is calculated

using the next state's Q-value Q(s′,a′;0)) from the target

network with parameters ‘0’. The primary network updates

its weights ‘0’ by minimizing the difference between the

target and its prediction.α is the learning rate.

Qtarget= r+ γmaxa ′Q(s′,a′;0−)

Δ0=α(Qtarget−Q(s,a;0))∇0Q(s,a;0)

(Where 0 represents network parameters and 0− represents the

target network parameters.)

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 11

2) REINFORCE Algorithm for Policy Gradient Methods

While value-based methods, like Q-Learning, aim to estimate

a value function (e.g., Q-values), policy-based methods, like

REINFORCE, directly optimize the policy to maximize

expected rewards. The REINFORCE algorithm, specifically,

makes use of the policy gradient theorem to accomplish this.

1) Objective Function: REINFORCE aims to maximize the

expected cumulative reward. The objective function J(θ)

is:

J(θ)=Eπθ[R(τ)]

Where:

πθ is the policy parameterized by θ

R(τ) is the total reward for trajectory τ

2) Policy Gradient Theorem: The gradient of the expected

reward concerning the policy parameters θ is:

∇θJ(θ)=Eπθ[∇θlogπθ(a∣s)⋅Gt
Where:

Gt is the expected cumulative reward from

time t onward.

3) Proof and Derivation: Starting with the definition of

J(θ):

J(θ)=∑sd(s)∑aπθ(a∣s)Qπθ(s,a)
Where d(s) is the stationary distribution of the Markov

Decision Process.

Taking the gradient:

∇θJ(θ)=∑sd(s)∑a∇θπθ(a∣s)Qπθ(s,a)

Applying the identity:

∇θπθ(a∣s)=πθ(a∣s)(∇θlogπθ(a∣s))

The result is:

∇θJ(θ)=Eπθ[∇θlogπθ(a∣s)⋅Gt

4) Hyperparameters:

1) Learning Rate: As with many optimization problems, the

learning rate determines the step size during parameter

updates.

2) Discount Factor γ: Controls the weighting of future

rewards. A factor closer to 1 places more weight on long-

term rewards, while a factor closer to 0 focuses on

immediate rewards.

5) Design Choices:

1) Baseline Subtraction: To reduce variance, a baseline

(often the state value V(s)) can be subtracted from the

return Gt. This doesn't introduce bias but can significantly

reduce variance.

2) Monte Carlo Estimation: The REINFORCE algorithm

uses the Monte Carlo method to estimate the return Gt.

This can lead to high variance but is unbiased. Monte-

Carlo (MC) methods uses a simple idea: It learns from

episodes of raw experience without modeling the

environmental dynamics and computes the observed

mean return as an approximation of the expected return.

To compute the empirical return Gt, MC methods need to

learn from complete episodes S1,A1,R2…..ST to

compute

 𝑮𝒕 = ∑𝑻−𝒕−𝟏
𝒌=𝟎 𝜸𝒌𝑹𝒕+𝒌+𝟏

and all the episodes must eventually terminate.

The empirical mean return for states is:

 𝑽(𝒔) =
∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕=𝒔]𝑮𝒕

∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕=𝒔]

 where 1[S_t=s] is a binary indicator function. We may

count the visit of state s every time so that there could

exist multiple visits of one state in one episode (“every-

visit”), or only count it the first time we encounter a state

in one episode (“first-visit”). This way of approximation

can be easily extended to action-value functions by

counting (s, a) pair.

𝑸(𝒔, 𝒂) =
∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕 = 𝒔, 𝑨𝒕 = 𝒂]𝑮𝒕

∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕 = 𝒔, 𝑨𝒕 = 𝒂]

TABLE I

Point #

X-

Coordinate

Y-

Coordinate

Inside

Quarter

Circle

Cumulati

ve

Estimate

of π

Cumulati

ve

Estimate

of π1

1 -0.234 0.687 Yes 4 6

2 0.872 0.956 No 2 9

3 -0.423 -0.532 Yes 2.6667 3.54

4 -0.11733333 -0.84866667 Yes 1.5556 3.72

5 8 4 No 0.88895 2.49

6 -0.30633333 7 Yes 8 1.26

7 4 -2.67716667 Yes -0.44435 0.03

8 -0.49533333 -3.28666667 No -1.111 -1.2

9 -0.58983333 -3.89616667 Yes 1 -2.43

10 4 5 Yes -2.4443 -3.66

11 -0.77883333 -5.11516667 No 2 -4.89

12 -0.87333333 -5.72466667 Yes -3.7776 -6.12

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 12

Fig. 1 A line graph displaying the Estimation

3) Multi-agent systems for concurrent data extraction from

multiple invoice sections: The MADDPG (Multi-Agent

Deep Deterministic Policy Gradient) algorithm stands as a

pivotal extension to the single-agent DDPG. Designed

specifically for the complexities of multi-agent

environments, it navigates scenarios where agents either

cooperate or compete, ensuring optimal strategy

determination.

1) Centralized Learning with Decentralized Execution:

In the MADDPG framework, each agent operates with

its individual actor (or policy) network. Yet, during the

training phase, an intriguing facet is introduced:

agents get full access not just to the environment's

comprehensive state, but also to the actions of their

counterparts. This holistic visibility equips agents to

sculpt policies that inherently consider the potential

strategies and actions of others. Once training is

completed and it’s execution time, the agents revert to

their decentralized form, relying solely on their local

observations to dictate actions in the environment.

2) Deterministic Policy Gradient: Given the vast

expanse of continuous action spaces that multi-agent

arenas often present, MADDPG turns to deterministic

policy gradients. This choice instills the algorithm

with a stability factor, particularly useful in buzzing

environments populated by numerous agents.

3) Key Benefits of MADDPG

1) Scalability: A shining asset of MADDPG is its

innate scalability. Whether you're dealing with a

handful or a horde of agents, MADDPG adapts

and scales effectively.

2) Handling Non-Stationarity: One cannot ignore

the dynamic nature of multi-agent environments.

With each agent evolving its strategy, the

environment becomes non-stationary from any

agent's perspective. However, MADDPG's

centralized training mechanism ensures agents

aren't blindsided but rather are prepped to

accommodate the ever-evolving strategies of their

peers.

3) Flexibility: MADDPG isn't a one-trick pony.

Whether agents are in a collaborative mood or the

environment resonates with competition,

MADDPG is versatile enough to cater to both

cooperative and competitive scenarios efficiently.

4) Pseudocode:

Initialize Actor and Critic networks with random

weights θ_actor and θ_critic

For each episode do:

 Initialize state s

 While s is not terminal:

 Choose action a using the current policy

π_θ_actor

 Execute action a, observe reward r and new state

s'

 TD_Error = r + γ V(s'; θ_critic) - V(s; θ_critic)

 θ_actor = θ_actor + α TD_Error ∇_θ_actor

log(π_θ_actor(A|S))

 θ_critic = θ_critic + β TD_Error ∇_θ_critic V(s)

 s = s'

 End While

 End For

5) Actor-Critic Algorithm: While policy-based methods,

like REINFORCE, directly optimize the policy, they

can have high variance. Value-based methods, on the

other hand, can suffer from inaccuracies in value

estimation. Actor-Critic combines both approaches: an

"actor" proposes actions based on a policy, and a

"critic" evaluates the actions taken using a value

function.

1) Actor: The actor is responsible for determining

the optimal action given a policy πθ(a∣s). It's

parameterized by θ.

2) Critic: The critic estimates the value function of

taking action a in state s. It can be either:

1) The state value function Vϕ(s), or

2) The action value function ϕ(s,a) It's

parameterized byϕ.

3) Objective Function: The objective is to

maximize expected rewards for the actor and

minimize the TD (Temporal Difference) error for

the critic.

4) Advantage Function: The advantage function

A(s,a) measures the difference between the value

of taking action a in state s and the average value

of all actions in that state:

Aϕ(s,a)=Qϕ(s,a)−Vϕ(s)
5) Policy Gradient Update: The actor is updated using the

policy gradient method:

∇θJ(θ)=Eπθ[∇θlogπθ(a∣s)⋅Aϕ(s,a)

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 13

6) Critic Update: The critic is updated to minimize the TD

error. If using the state value function:

δt=r+γVϕ(s′)−Vϕ(s)

If using the action value function:

 δt=r+γQϕ(s′,a′)−Qϕ(s,a)

4) Advanced RL Techniques:

1) Proximal Policy Optimization (PPO):

Objective Function:

LCLIP(θ)=E^t[min(rt(θ)A^t,clip(rt(θ),1−ϵ,1+ϵ)A^t)]
(Where rt(θ)=πθold(at∣st)πθ(at∣st) is the probability ratio, and

A^t is the advantage function.)

1) Context: PPO addresses the challenges of policy

gradient methods, which might take large updates and

harm learning. It ensures the new policy doesn't

deviate much from the old one.

2) Explanation: rt(θ) is the ratio of the new policy's

probability to the old one's for a given action. The

objective function is designed to penalize drastic

changes in policy by clipping this ratio. A^t represents

the advantage, telling how much better an action is

compared to the average action in that state.

3) Pseudocode:

Initialize policy network with weights θ

For iteration = 1, N do:

 Collect trajectories using the current policy π_θ

 Compute rewards-to-go and advantage estimates,

A_t

 For epoch = 1 to K do:

 for each sampled trajectory step:

 θ_old = θ

 r_t(θ) = π_θ(A_t|S_t) / π_θ_old(A_t|S_t)

 L_clip = min(r_t(θ) A_t, clip(r_t(θ), 1-ε, 1+ε)

A_t)

 θ = θ + α mean(L_clip)

 End for

 End For

End For

4) Explanation:

1) PPO ensures the policy updates are not too drastic

by clipping the policy update using a

hyperparameter ε.

2) After collecting trajectories using the policy, it

computes the advantage for each state-action pair.

3) The policy is then updated using a modified loss

function, L_clip, which penalizes drastic changes.

4) Policy gradient methods optimize the parameters

of a policy by following the gradients toward

higher rewards. However, large policy updates

can degrade the performance, which led to the

development of trust region policy optimization

methods. PPO is an attempt to constrain the

policy updates, ensuring stability in learning.

5) Proof and Derivation:

1) The key insight behind PPO is that if a new policy

deviates too far from the old policy, it might be

harmful. Thus, PPO tries to keep the new policy

close to the old policy.

2) The ratio rt(θ) measures the relative likelihood of

action at under the new policy versus the old

policy. If the ratio is far from 1, it means the

policy has changed a lot.

3) A^t is the advantage estimate, indicating how

much better or worse action at was than the

average action at that state. Positive advantage

means the action was beneficial, and negative

means it was detrimental.

4) The objective LCLIP takes the minimum between

the unclipped and clipped objectives. The

clipping ensures the objective doesn't favor

changes too large in policy, as controlled by

hyperparameterϵ.

6) Design Choices:

1) Clipping: The central design choice in PPO is the

clipping mechanism. It was chosen over trust-

region methods because it's simpler to implement

and doesn't require second-order optimization.

2) Multiple Epochs: In PPO, the same data can be

used to update the policy multiple times. This

choice, while increasing computation, helps in

making better use of collected data.

7) Hyperparameters:

1) ϵ: This is the clipping parameter. Typical values

might be around 0.1-0.3. A smaller ϵ means

smaller policy updates, which might slow down

learning but can make it more stable.

2) Learning Rate α: Like other optimization

algorithms, it determines the step size of updates.

It's crucial to tune this parameter for stable and

efficient learning.

3) Advantage Estimation: Techniques like

Generalized Advantage Estimation (GAE) can be

used to compute the advantage estimate. The

decay factor in GAE is another hyperparameter to

tune.

5) Exploration-Exploitation Dilemma

1) Definition:

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 14

1) Exploration: The agent takes actions to

gather more information about the

environment. It might receive less immediate

reward but can discover more lucrative

strategies.

2) Exploitation: The agent leverages its current

knowledge to maximize immediate rewards,

possibly at the cost of long-term gain.

3) Significance: The dilemma is pivotal

because both exploration and exploitation are

crucial. Without exploration, an agent might

stick to a suboptimal strategy. Without

exploitation, the agent might keep wandering

without ever benefiting from its knowledge.

2) Strategies and Approaches:

1) ε-Greedy Strategy:

1) At each step, with probability �ε, take a

random action (explore), and with

probability 1−�1−ε, take the best known

action (exploit).

2) Over time, �ε can be decayed to shift from

exploration to exploitation.

3) Optimistic Initial Values: Initialize action-

value estimates optimistically. This

encourages exploration of less-visited

states/actions until their true values become

known.

XI. INTEGRATION CONSIDERATIONS

When integrating RL-based AI-OCR solutions into

existing invoice processing systems, there are

several factors to consider. These touch on software

architecture, scalability, performance, adaptability,

and system reliability.

A. Software Modularity and Microservices:

Ensuring that the RL-based AI-OCR solution is modular

can help with updates, modifications, and future

scalability. Microservices architecture can be

advantageous here, allowing individual components of the

OCR system to be updated without affecting others.

B. Hardware Acceleration:

To speed up RL processing and OCR recognition, it's

essential to leverage hardware accelerators like GPUs or

TPUs. This also involves software-hardware co-design

considerations.

C. Continuous Learning and Adaptability:

Invoices evolve in design and structure. The RL-based

OCR system should support continuous learning, allowing

it to adapt to new invoice formats.

D. Integration with Enterprise Systems:

Invoices often flow into Enterprise Resource Planning

(ERP) or Customer Relationship Management (CRM)

systems. Seamless integration is key, requiring robust APIs

and data formatting standards.

E. Data Security and Privacy:

Invoices contain sensitive information. It's crucial to

ensure that the OCR process, storage, and data transfer

follow industry-standard encryption and security

protocols.

F. Scalability and Load Balancing:

Considering the volume of invoices a large enterprise

might process, ensuring scalability is essential. Load

balancing and distributed systems can ensure consistent

performance.

G. Monitoring and Maintenance:

For the RL-based AI-OCR system to remain reliable,

continuous monitoring and proactive maintenance are

necessary. This helps in identifying potential issues before

they become major problems.

XII. HANDLING NOISY DATA AND PARTIAL

INFORMATION

In the context of AI-OCR, handling noisy data and

processing partial information are significant

challenges. Invoices can come in various formats,

with watermarks, different fonts, smudges, and

sometimes even partial information due to tearing or

faded printing. Reinforcement learning, when

combined with robust preprocessing and other

machine learning techniques, can prove effective in

addressing these challenges.

A. Noise Reduction Techniques:

Before feeding data into the RL model, applying noise

reduction techniques can enhance the clarity of the

information in the invoice. Methods such as Gaussian

filtering, median filtering, and adaptive thresholding can

be used.

B. Handling Varying Resolutions:

Invoices can come scanned at different resolutions.

Techniques such as image resampling and interpolation

can help in normalizing the resolutions before processing.

C. Use of Autoencoders:

Autoencoders can be utilized to denoise and reconstruct

the original data, making it more recognizable.

D. Transfer Learning and Domain Adaptation:

Leverage pre-trained models and transfer learning to

improve recognition accuracy, even with noisy or

incomplete data. Domain adaptation techniques can help in

adjusting to the specific nuances of invoice data.

E. Sequence Models for Contextual Understanding:

Models like RNNs and LSTMs can be used to predict

missing or unclear segments in the invoice by

understanding the context.

F. Robust Reward Design in RL:

In situations with partial information, designing the reward

system to encourage the RL agent to make the best

decisions based on available data is critical. Sparse rewards

can help in guiding the agent effectively.

G. Feedback Loops and Human-in-the-loop:

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 15

For instances where the confidence level is low or the data

is highly noisy, a feedback mechanism that brings in

human intervention can be employed. This ensures that

error rates are minimized.

H. Noise Reduction Techniques:

1) Gaussian filtering: A convolution operation between

the image I and Gaussian kernel G:

Ifiltered(x,y)=I(x,y)∗G(x,y)
Where f is a function mapping the new

coordinates (x′,y′) to old ones.

2) Handling Varying Resolutions:

1) Image Resampling: If Io is the original

image and Ir is the resampled image , Where

f is a function mapping the new coordinates

(x′,y′) to old ones.Ir(x′,y′)=Io(f(x′),f(y′))

3) Use of Autoencoders: Autoencoders aim to reproduce

their input. Given an encoder function E and decoder

function D : Ireconstructed=D(E(Ioriginal)) , Loss

often used is the mean squared error: L(Ioriginal

,Ireconstructed)=∣∣Ioriginal−Ireconstructed∣∣2

4) Transfer Learning and Domain Adaptation:

Mathematically, we might represent two domains as

Ds (source) and Dt (target). Transfer learning aims to

leverage the function fs learned on Ds to improve the

learning of the target predictive function ft on Dt.

5) Sequence Models for Contextual

Understanding:Given a sequence S=(s1,s2,...,sn), an

LSTM would compute the sequence's hidden states ht

and memory states ct using:

ft=σg(Wf⋅[ht−1,st]+bf)

it=σg(Wi⋅[ht−1,st]+bi)

ot=σg(Wo⋅[ht−1,st]+bo)

ct=ft∘ct−1+it∘tanh(Wc⋅[ht−1,st]+bc)

ht=ot∘tanh(ct)

Where ∘∘ denotes the Hadamard (element-wise)

product, and σg is the sigmoid function.

XIII. CASE STUDY: REAL-WORLD IMPLEMENTATION

OF RL-BASED AI-OCR FOR INVOICES

 Businesses handle vast numbers of invoices daily,

leading to significant manual workload and

occasional errors. A company decided to automate

their invoice processing using an AI-OCR system

enhanced by Reinforcement Learning (RL).
1) Challenges

1) Diverse Formats: Invoices from different vendors had

varying formats and styles.

2) Noisy Data: Some invoices were scanned copies,

leading to noise and deterioration in quality.

3) Incomplete Data: At times, parts of the invoices were

obscured or missing.

2) Solution Overview

In collaboration with a team of AI researchers, decided to

leverage RL to dynamically adapt to different invoice layouts

and to make informed decisions even when presented with

partial or noisy data.

1) System Design

1) Environment:

1) States: Image segments, text extracted from

OCR, previous actions taken.

2) Actions: Move to the next segment, adjust OCR

settings, classify current segment (e.g., date,

item, cost), request human input.

3) Rewards: Positive for correctly classified

segments, negative for misclassifications or

unnecessary human intervention.

2) Agent Architecture:

1) Deep Q-Network (DQN): To estimate the Q-

values of different actions based on the current

state.

2) LSTM Layer: To consider sequences of actions

and states, helping the model understand the

context within the invoice.

3) AI-OCR Algorithm for Invoice Processing

1) Preprocessing: Binarization: Convert the image

to black and white.

def binarize(image):

 threshold_value, binary_image =

cv2.threshold(image, 128, 255,

cv2.THRESH_BINARY_INV +

cv2.THRESH_OTSU)

 return binary_image

2) Noise Removal: Remove small noise using

morphological operations.

1) Connected Component Analysis (for Noise

Removal):This algorithm helps identify and

eliminate noise in the binarized image. Label

each pixel based on its connectivity with

other pixels. Filter out small, connected

components which are likely noise. Skew

Correction: Correct the alignment of the text.

2) Segmentation:

1) Line Segmentation: Split the image

into lines of text.

2) Word Segmentation: Further split lines into

words.

4) Character Recognition:Used a trained model (CNNs,

RNNs, or hybrid models are popular choices) to

recognize characters from the segmented words.

def recognize_character(character_image,

model):

 return model.predict(character_image)

5) Post-processing & Structured Data Extraction:

1) Spell Checking: Correct any recognized

words that might be misspelled.

2) Template Matching: If the invoice has a

known structure or template, match it to

extract structured data.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 16

3) Key-Value Pair Extraction: Recognize

common invoice elements (e.g., "Total:",

"Invoice Number:") and extract the

associated values.

6) Validation: Cross-check extracted data with known

formats or patterns (e.g., date formats, valid company

names, standard invoice terms).

1) Checksum Validation (for Validating

Extracted Data): For fields like invoice

numbers that may follow a checksum pattern.

def validate_checksum(invoice_number):

 # A hypothetical checksum validation for

an invoice number

 total = 0

 for digit in invoice_number:

 total += int(digit)

 return total % 10 == 0 #

2) Date Arithmetic (for Date Validation):

Validate if extracted dates are plausible.

def is_valid_date(day, month, year):

 # Check if the month is valid

 if month < 1 or month > 12:

 return False

 # Days in each month

 days_in_month = [31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31]

 # Check for leap year

 if month == 2 and (year % 400 == 0 or

(year % 4 == 0 and year % 100 != 0)):

 return day <= 29

 return 1 <= day <= days_in_month[month

- 1]

3) Pattern-based Arithmetic Validation:

Certain invoice values, like totals, might be

expected to adhere to specific patterns or

arithmetic relationships. For instance,

ensuring that subtotals add up correctly.

def validate_totals(subtotals, total):

 return round(sum(subtotals), 2) ==

round(total, 2)

4) Entity Recognition: Use Named Entity

Recognition (NER) models to identify and

categorize key data points such as dates,

company names, amounts, etc.

5) Output Structuring: Organize the extracted

data into a structured format, like JSON or

CSV, for integration with other systems.

def structure_data(entities):

 return {

 "Invoice Number":

entities.get("invoice_number"),

 "Date": entities.get("date"),

 "Total Amount": entities.get("total"),

 # ... other fields

 }

7) Training: The team created a synthetic dataset of

invoices, using varying formats, levels of noise, and

partial occlusions. Human annotators validated the

dataset, and the RL agent was initially trained on this.

Then, it was fine-tuned on real-world invoices with

human-in-the-loop feedback.

8) Results & Outcomes

1) Improved Efficiency: System reported an 80%

reduction in manual invoice processing hours.

2) High Accuracy: The system achieved 95%

accuracy in recognizing and classifying data from

the invoices.

3) Adaptive Learning: Over time, the system

adapted to newer invoice formats faster due to its

RL foundation.

4) Human-in-the-loop Success: In ambiguous

situations, the system would request human input,

ensuring that accuracy was maintained without

completely sidelining the human component.

9) Arithmetic formulas : Arithmetic formulas are

fundamental to many processes in the AI-OCR

pipeline for invoice processing, especially during the

validation and reconciliation of extracted data. These

formulas provide foundational arithmetic checks and

validations within the AI-OCR pipeline for invoices.

Integrating such checks ensures that the extracted data

is not only present but also accurate and makes sense

in the context of the invoice's content.

1) Histogram Computation: Used in image

thresholding and segmentation.

H(i)=j=1∑Wk=1∑HP(i,j,k)

where H(i) is the histogram value for pixel

intensity i, W and H are the width and height of

the image, P(i,j,k) is 1 if the pixel at position j,k

has intensity i, and 0 otherwise.

2) Mean and Standard Deviation: Useful for

thresholding and data validation.

μ=N1i=1∑Nxi

σ=N1i=1∑N(xi−μ)2

where N is the total number of data points and xi

is the ℎith data point.

3) Weighted Average for Data Smoothing: Useful

for noise removal or post-processing.

Wavg=∑i=1Nwi/∑i=1Nwixi
4) Checksum Formulas: Some invoices or products

might use checksums (like UPC or ISBN for

books) for validation.

Checksum=(i=1∑Nxi)mod10

where xi are individual digits.

XIV. ADVANTAGES OF RL-BASED AI-OCR IN

INVOICE PROCESSING

A. Adaptive Learning:

RL models can continually learn and adapt to

changing invoice formats without the need for

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 17

retraining from scratch. As businesses encounter

new vendors with unique invoice layouts, an RL-

enhanced AI-OCR system can dynamically adjust.
B. Optimized Decision Making:

Beyond mere character recognition, RL can aid the

system in making decisions about which segments of

an invoice to process next, optimizing the sequence

of recognition tasks.
C. Handling Noisy Data:

RL can provide a framework to make informed

decisions even when the data is partial, obscured, or

noisy, effectively reducing the impact of poor-

quality invoice scans.
D. Human-in-the-loop Systems:

An RL agent can recognize when it's uncertain and

request human input, combining the strengths of

automated systems and human judgment.
E. Robustness:

Traditional OCR systems might fail when presented

with an unfamiliar format. RL-based systems have

the potential to explore and understand new layouts

effectively.
F. Continuous Learning:

RL agents inherently work on a feedback loop,

allowing them to constantly refine their strategies

based on the rewards or penalties they receive,

ensuring they evolve with the data they process.
G. Resource Efficiency:

RL can help in determining which parts of an invoice

are relevant, allowing for faster processing times by

avoiding unnecessary computations.
H. Scalability:

As a company grows and processes a larger number

of invoices, an RL-based AI-OCR system can scale

effectively, adapting to larger datasets and more

diverse formats.

XV. EXPANDING THE APPLICATION OF RL-BASED

AI-OCR TO OTHER DOCUMENT TYPES BEYOND

INVOICES:

The adaptability of RL-based AI-OCR, as proven in

invoice processing, prompts consideration of its

utility across diverse document genres. Each

document category, from academic to business,

presents unique challenges. Yet, the dynamic

learning capabilities of reinforcement learning can

potentially surmount these challenges:

A. Contracts and Agreements:

Contracts, with their varied layouts and dense

legalese, can be complex. RL-based AI-OCR can

streamline the extraction of pivotal clauses,

stakeholders, terms, and expiration dates, offering a

continuous learning mechanism to adapt to diverse

contract formats.

B. Research Papers and Articles:

Academic papers, with their distinct sections,

demand specialized parsing. The RL system can

pinpoint and extract vital components such as the

title, authors, and main findings, aiding in systematic

reviews and content summarizations.

C. Medical Reports:

With critical information often dispersed amidst

diagrams, technical terminologies, or handwritten

notes, medical reports pose a considerable challenge.

RL-enabled OCR can categorize and highlight

patient data, prescriptions, and diagnoses, ensuring

sensitive information remains protected.

D. Bank Statements:

Comprising tabulated data, logos, transaction

narratives, and more, bank statements require

accurate parsing. RL can facilitate the extraction of

transactional histories, account details, and even

detect inconsistencies or potential fraudulent

activities.

E. Manuals and Guidelines:

Typically containing varied formats, diagrams,

and sequences, manuals can benefit from RL-driven

OCR systems that efficiently index crucial steps or

troubleshoot solutions, simplifying the creation of

digital assistants or user guidance systems.

In essence, the dynamic nature of RL-based AI-OCR

systems paves the way for efficient document

processing across an array of formats. Its ability to

recognize patterns and optimize decisions

contextually can be transformative for both

businesses and academic entities.

XVI. ENHANCING RL MODELS WITH NEWER

ALGORITHMS AND STRATEGIES

Reinforcement Learning (RL) stands as a dynamic

facet of machine learning, undergoing constant

evolution. For businesses and researchers, staying at

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 18

the forefront requires a continual upgrade of RL

models by integrating emerging algorithms and

strategies, ensuring that they deliver peak

performance and can adapt to fresh challenges. One

notable approach is the creation of hybrid models,

where RL is fused with either supervised or

unsupervised learning, leveraging the strengths of

both paradigms. Such integration promises better

initial performance, a reduction in sample

complexity, and heightened generalization. Another

innovative strategy is the incorporation of transfer

learning, where the insights acquired from one task

can significantly inform or elevate the performance

on another, albeit different, task. This not only

speeds up the learning process but also curtails

computational expenses, offering adaptability across

a range of tasks.

Hierarchical Reinforcement Learning (HRL) offers

another perspective by breaking down intricate tasks

into more digestible hierarchical sub-tasks,

streamlining the learning process. This structure not

only makes it feasible to address more complicated

issues but also refines decision-making and boosts

interpretability. On the other hand, Meta

Reinforcement Learning pushes the boundary by

enabling RL agents to grasp the learning process

itself, ensuring rapid adaptability to new tasks, even

with limited data. This approach underscores swift

adaptability, broader generalization, and truncated

training periods.

Further expanding the horizon, Multi-Agent

Reinforcement Learning (MARL) introduces a

paradigm where multiple agents learn either

collaboratively or competitively within a unified

environment. Such a collaborative framework paves

the way for solving intricate problems, promotes

cooperative strategies, and mirrors real-world

situations more closely. In addition, the recent

emphasis on exploration enhancement strategies,

such as curiosity-driven exploration or intrinsic

motivation, drives agents to explore in a more

refined manner. This results in more efficient

exploration patterns, circumvention of local minima,

and augmented robustness in unpredictable

environments.

Borrowing concepts from the realm of deep learning,

the inclusion of attention mechanisms in RL allows

the models to zoom in on pertinent portions of the

input, refining decision-making and handling

expansive input domains. This results in a marked

improvement in tasks reliant on sequences. Lastly,

the rise of modular networks and Neural

Architecture Search (NAS) emphasizes the

automated hunt for optimal model architectures or

the development of modular networks for reuse.

These strategies ensure models with optimized

structures, minimal manual adjustments, and

heightened scalability.

In summation, the RL landscape is in perpetual

motion. Embracing these novel strategies and

algorithms becomes imperative for stakeholders

wishing to maintain a competitive edge, especially in

applications like AI-OCR. By remaining updated

and timely integrating these advancements,

businesses can guarantee the unparalleled

performance, efficiency, and versatility of their RL-

driven systems.

XVII. CONCLUSION

The journey into the integration of Reinforcement

Learning (RL) with AI-OCR for invoice processing

has unveiled a myriad of possibilities and

advancements. From the fundamental understanding

of both domains to the intricate nuances of their

merger, the exploration has been profound.

Core Findings & Takeaways

A. The dynamic nature of RL makes it exceptionally

suitable for the constantly evolving and diverse

world of invoice processing.

B. By employing RL in AI-OCR, systems can better

adapt to the myriad of invoice formats, extract

relevant data more efficiently, and continuously

improve without exhaustive retraining.

C. The versatility of RL allows for its application

beyond invoices, offering promise for other

documents like contracts, research papers, and

medical reports.

D. Contemporary strategies, from hybrid models to

meta-learning, are continuously pushing the

boundaries of what RL can achieve in AI-OCR,

paving the way for even more innovative

solutions.

Above all, the transformative potential of RL in AI-

OCR is evident. It's not merely about the automation

of a task but the revolutionization of it. Through this

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 19

integration, businesses can look forward to

substantial gains in efficiency, accuracy, and

adaptability in their invoice processing systems. In

the broader spectrum, this merger epitomizes the

very essence of technology – to continually evolve,

adapt, and enhance the ways we operate, promising

a future where document processing reaches

unparalleled heights of precision and intelligence.

REFERENCES
[1] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction,"

MIT Press, 2018.
[2] J. P. Thomas, "Understanding the Agent-Environment Interaction in

Reinforcement Learning," IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning, pp. 12-19, 2016.

[3] M. L. Littman, "Markov games as a framework for multi-agent

reinforcement learning," IEEE Transactions on Neural Networks and

Learning Systems, vol. 7, no. 4, pp. 904-918, 1996.
[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning:

A survey," Journal of Artificial Intelligence Research, vol. 4, pp. 237-

285, 1996.
[5] C. J. C. H. Watkins and P. Dayan, "Q-learning," Machine Learning, vol. 8,

no. 3-4, pp. 279-292, 1992.

[6] D. Silver et al., "Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm," IEEE Transactions on Games, vol.

10, no. 1, pp. 1-19, 2018.

[7] T. J. Perkins and A. G. Barto, "Lyapunov design for safe reinforcement
learning," IEEE Journal on Selected Topics in Signal Processing, vol. 1,

no. 1, pp. 156-170, 2007.

[8] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
"Microservices: The journey so far and challenges ahead," in IEEE

Software, vol. 35, no. 3, pp. 24-35, 2018.

[9] J. Dean, D. Patterson, and C. Young, "A new golden age in computer

architecture: Empowering the machine-learning revolution," in IEEE

Micro, vol. 38, no. 2, pp. 21-29, 2018.
[10] S. Thrun and L. Pratt, "Learning to learn: Introduction and overview," in

Learning to learn, Kluwer Academic Publishers, 1998.

[11] R. Hirschheim and H. K. Klein, "Four paradigms of information system
development," Communications of the ACM, vol. 32, no. 10, pp. 1199-

1216, 1989.

[12] D. Geer, "Data security and privacy in the IoT," Computer, vol. 50, no. 9,
pp. 20-24, 2017.

[13] M. R. Rahman and I. Aib, "A survey of load balancing in cloud computing:

Challenges and algorithms," in Second Symposium on Network Cloud
Computing and Applications, IEEE, 2012, pp. 137-142.

[14] P. Mell, T. Grance, and K. Scarfone, "The NIST definition of cloud

computing," Communications of the ACM, vol. 53, no. 6, pp. 50-50,
2010.

[15] B. Settles, "Active learning literature survey," University of Wisconsin,

Madison, vol. 52, no. 55-66, pp. 11, 2010.

[16] J. B. Tenenbaum et al., "How to Grow a Mind: Statistics, Structure, and

Abstraction," Science, vol. 331, no. 6022, pp. 1279-1285, 2011.

[17] A. van den Oord et al., "Representation Learning with Contrastive
Predictive Coding," arXiv preprint arXiv:1807.03748, 2018.

[18] T. P. Lillicrap et al., "Continuous control with deep reinforcement

learning," arXiv preprint arXiv:1509.02971, 2015.
[19] T. Kanungo et al., "OMNIPAGE vs. Tesseract: OCR Accuracy,"

Proceedings of the 2011 Workshop on Historical Document Imaging and

Processing, 2011.
[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning

applied to document recognition," Proceedings of the IEEE, vol. 86, no.

11, pp. 2278-2324, 1998.
[21] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J.

Schmidhuber, "A novel connectionist system for unconstrained

handwriting recognition," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 5, pp. 855-868, 2009.

[22] N. Otsu, "A thresholding selection method from gray-level histograms,"

IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp.

62-66, 1979.

[23] K. Simonyan and A. Zisserman, "Very deep convolutional networks for

large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[24] A. Graves and J. Schmidhuber, "Framewise phoneme classification with

bidirectional LSTM networks," Proceedings of the 2005 IEEE

International Joint Conference on Neural Networks, 2005.
[25] F. Shafait, D. Keysers, and T. M. Breuel, "Efficient implementation of

local adaptive thresholding techniques using integral images,"

Document Recognition and Retrieval XV, vol. 6815, p. 681510, 2008.
[26] K. Nakayama, H. Takano, and T. Yamakawa, "OCR system for the

visually impaired reading aloud signs and nameplates," 1993 Second

Asian Conference on Computer Vision, 1993.
[27] S. Vajda, "Layout Analysis of Hierarchical Text Graphs," 2013 12th

International Conference on Document Analysis and Recognition, 2013.

[28] A. Ul-Hasan, F. Shafait, and T. M. Breuel, "Segmentation-free OCR for
printed Urdu script using bidirectional LSTM networks," 2013 12th

International Conference on Document Analysis and Recognition, 2013.

[29] M. Rusinol, D. Aldavert, R. Toledo, and J. Llados, "Browsing
heterogeneous document collections by a segmentation-free word

spotting method," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 34, no. 4, pp. 834-846, 2012.
[30] P. Doetsch, A. Maier, and H. Ney, "Fast and Robust Training of Recurrent

Neural Networks for Offline Handwriting Recognition," 2014 22nd

International Conference on Pattern Recognition, 2014.
[31] M. Abolhasani, H. R. Rabiee, and M. Farajtabar, "Reinforcement Learning

Adaptation from several environments," IEEE Transactions on Neural

Networks and Learning Systems, vol. 32, no. 2, pp. 559-569, 2021.
[32] J. Ho and S. Ermon, "Generative Adversarial Imitation Learning,"

Advances in Neural Information Processing Systems, vol. 29, pp. 4565-

4573, 2016.
[33] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,

"Deep Reinforcement Learning that Matters," Proceedings of the 32nd

AAAI Conference on Artificial Intelligence, 2018.
[34] O. Vinyals, M. Fortunato, and N. Jaitly, "Pointer Networks," Advances in

Neural Information Processing Systems, vol. 28, pp. 2692-2700, 2015.

[35] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den

Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M.

Lanctot, "Mastering the game of Go with deep neural networks and tree
search," Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[36] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, "Learning

hand-eye coordination for robotic grasping with deep learning and large-
scale data collection," International Journal of Robotics Research, vol.

37, no. 4-5, pp. 421-436, 2018.

[37] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., "A general

reinforcement learning algorithm that masters chess, shogi, and Go

through self-play," Science, vol. 362, no. 6419, pp. 1140-1144, 2018.
[38] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de

Freitas, "Dueling network architectures for deep reinforcement

learning," International Conference on Machine Learning, pp. 1995-
2003, 2016.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., "Human-level control through deep reinforcement learning," Nature,

vol. 518, no. 7540, pp. 529-533, 2015.

[40] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region
policy optimization," International Conference on Machine Learning, pp.

1889-1897, 2015.

[41] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[42] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et

al., "Human-level control through deep reinforcement learning," Nature,
vol. 518, no. 7540, pp. 529-533, 2015.

[44] R. J. Williams, "Simple statistical gradient-following algorithms for

connectionist reinforcement learning," Machine Learning, vol. 8, no. 3-
4, pp. 229-256, 1992.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 20

[45] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, "Prioritized experience

replay," arXiv preprint arXiv:1511.05952, 2015.

[46] C. Tensmeyer and T. Martinez, "Document image binarization with fully
convolutional neural networks," arXiv preprint arXiv:1708.03276, 2017.

[47] M. Smith, "An overview of the Tesseract OCR engine," Ninth
International Conference on Document Analysis and Recognition

(ICDAR 2007), vol. 2, pp. 629-633, IEEE, 2007.

[48] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J.

Schmidhuber, "A novel connectionist system for unconstrained

handwriting recognition," IEEE transactions on pattern analysis and
machine intelligence, vol. 31, no. 5, pp. 855-868, 2009.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 21

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, 2021

ISSN :2394-2231 http://www.ijctjournal.org Page 22

XVIII.

http://www.ijctjournal.org/

