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Abstract: 
 

            The rapidly advancing domain of Reinforcement Learning (RL) presents revolutionary opportunities 

when integrated with AI-OCR systems, particularly in the context of invoice processing. This 

comprehensive exploration delves into the intricacies of both RL and AI-OCR, highlighting their individual 

strengths and the unprecedented potential they offer when combined. As invoices come in diverse formats, 

the adaptive nature of RL allows AI-OCR systems to learn and extract pertinent data with heightened 

efficiency continuously. Furthermore, this integration showcases versatility, extending its promising 

applications to other document genres, such as contracts and research papers. By amalgamating 

contemporary RL strategies, from hybrid models to meta-learning, AI-OCR systems stand to gain 

significantly in terms of accuracy, adaptability, and overall performance. This paper underscores the 

transformative essence of merging RL with AI-OCR, pointing towards a future where document processing 

achieves unmatched levels of precision and automation.. 
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I. INTRODUCTION  

In recent years, artificial intelligence (AI) and 

machine learning (ML) technologies have 

burgeoned, providing innovative solutions across a 

plethora of domains. One specific area of interest 

that has seen significant advancement is Optical 

Character Recognition (OCR), where traditional 

algorithms have been complemented and, in many 

cases, superseded by AI-driven methods [1]. A 

crucial application of AI-OCR is invoice processing, 

an integral component of financial and procurement 

operations in businesses. 

OCR has historically been a domain that depended 

largely on image-processing techniques combined 

with deterministic algorithms [2]. The integration of 

AI methodologies, particularly deep learning, has 

enhanced the accuracy and efficiency of OCR 

systems, which can recognize diverse fonts and 

layouts even in noisy conditions [3]. Nevertheless, 

the dynamic nature of invoices, with their varying 

formats, inconsistent layouts, and differing 

terminologies, poses unique challenges [4]. 

This is where Reinforcement Learning (RL), a sub-

field of machine learning concerned with how agents 

ought to take actions in an environment to maximize 

some notion of cumulative reward, plays a pivotal 

role [5]. The process of learning through feedback, 

much like training a dog to perform tricks, aids in 

dynamically identifying the regions of interest in an 

invoice, optimizing the sequence of data extraction, 

and continuously refining the extraction strategy 

based on feedback from processed documents [6]. In 

essence, RL-driven OCR solutions adapt and evolve, 

mirroring the dynamic nature of the invoices they 

process. 
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While the marriage of RL with AI-OCR for invoice 

processing seems promising, it's crucial to dive deep 

into its intricacies, evaluate the associated challenges, 

and understand its practical implications. 

II. REINFORCEMENT LEARNING (RL) 

Reinforcement Learning (RL) is an integral sub-

domain of machine learning, concerned with the 

decision-making processes of agents in each 

environment. Unlike supervised and unsupervised 

learning paradigms, RL is predicated on the 

feedback loop between an agent's actions and the 

rewards or penalties these actions engender [1]. This 

feedback mechanism facilitates the agent in refining 

its strategies and decisions over time to maximize a 

cumulative reward. 

A. Central to the understanding of RL are several key 

terminologies: 

1) Agent: The decision-maker or learner. In a typical RL 

setting, the agent continually interacts with its 

surroundings and learns from the consequences of its 

actions [2]. 

2) Environment: The external system with which the 

agent interacts. It responds to the agent's actions, 

transitions to new states, and offers rewards as 

feedback [3]. 

3) States: A representation of the current scenario or 

configuration in which the agent finds itself within the 

environment. A state can be anything from a single 

data point to a complex configuration of numerous 

variables [4]. 

4) Actions: The set of all possible moves or decisions the 

agent can make. In each state, the agent selects an 

action based on a policy, which is a mapping from 

states to actions [5]. 

5) Rewards: After taking an action, the agent receives a 

reward (or penalty) from the environment. The 

primary objective of the agent is to maximize the 

expected cumulative reward over time [6]. 

6) Policy: A strategy that the agent employs to determine 

the next action based on the current state. It can be 

deterministic or stochastic [7]. 

Understanding the intricate interplay between these 

concepts is pivotal for effective implementation and 

optimization of RL-based systems. By mastering the 

feedback loop, agents can adapt and evolve their 

strategies to respond effectively to complex, 

dynamic environments, ranging from game playing 

to real-world applications like robotics, finance, and 

healthcare [8]. 

III. COMPARISON WITH OTHER MACHINE 

LEARNING PARADIGMS 

Reinforcement Learning (RL) is a unique learning 

paradigm, but to understand its niche, it is essential 

to contrast it with its siblings in the machine learning 

family: Supervised Learning and Unsupervised 

Learning. 
A. Supervised Learning (SL): 

1) Nature: SL involves learning a function that maps 

input to output based on labeled training examples [9]. 

2) Feedback: The system learns from explicit feedback, 

i.e., the labeled training data [10]. 

3) Use Cases: SL is typically used for tasks such as 

regression and classification. Examples include 

predicting house prices or categorizing emails as spam 

or not spam. 

4) Comparison with RL: Unlike SL, RL does not have 

labeled data or explicit correct answers. Instead, it 

learns from rewards or penalties over time [1]. 

 
B. Unsupervised Learning (UL): 

1) Nature: UL concerns identifying underlying patterns 

or structures in data without explicit labels [11]. 

2) Feedback: There isn’t any explicit feedback. The goal 

is to learn representations or structures like clusters 

[12]. 

3) Use Cases: UL techniques, like clustering or 

dimensionality reduction, are used to group similar 

data or reduce data's dimensions. 

4) Comparison with RL: While UL seeks to find 

structures in data, RL focuses on maximizing rewards 

through interactions. RL has an objective (rewards) 

guiding its learning, while UL often doesn’t have such 

direct objectives [13]. 

 
C. Semi-Supervised and Active Learning: 

1) Nature: These are intermediate forms of learning, 

leveraging both labeled and unlabeled data or 

interactively querying the user/teacher for labels [14]. 

2) Comparison with RL: While there's an element of 

interaction in active learning, it lacks the continuous 

adaptability and decision-making process present in L, 

which learns from the consequences of its actions 

rather than queried labels [15]. 

 
D. Self-Supervised Learning: 

1) Nature: A paradigm where labels are automatically 

generated from the input data, turning an unsupervised 

task into a supervised one [16]. 

2) Comparison with RL: Though both methods can learn 

without explicit human-provided labels, RL 

distinguishes itself by its action-reward mechanism, 

while self-supervised learning revolves around 

predicting parts of the input from other parts [17] 
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In essence, while all these paradigms aim at learning 

from data, their methodologies, feedback 

mechanisms, and objectives differ. RL, with its focus 

on sequential decision-making and learning through 

trial and error, offers unique advantages in dynamic 

environments where immediate feedback may not 

always denote long-term success [18]. 

IV. WHY RL IS SUITABLE FOR AI-OCR 

APPLICATIONS 

Reinforcement Learning (RL) in AI-OCR (Optical 

Character Recognition) applications can be a game-

changer, particularly for complex tasks that involve 

sequence prediction, decision-making, and 

adaptability to variations in input data.  

Reasons why  RL is particularly suitable for AI-OCR 

applications: 

A. Sequential Decision-Making: 

1) OCR Challenges: OCR, especially for documents like 

invoices or forms, often requires processing sequences 

of characters, words, and structures, making decisions 

at each step on what character or word is being 

identified. 

2) RL Advantage: RL inherently operates in an 

environment of sequential decision-making. Given the 

sequence-like nature of reading text, RL can effectively 

learn policies to predict the next character or word in a 

sequence. 

B. Adaptability to Varied Inputs: 

1) OCR Challenges: Invoices, forms, and other 

documents come in varied formats, fonts, and layouts. 

A static OCR model might not perform consistently 

across all these variations. 

2) RL Advantage: Through its reward mechanism, RL 

can adaptively learn optimal strategies to process 

varied document types, updating its policy based on 

feedback from successes or errors. 

C. Handling Ambiguities: 

1) OCR Challenges: Characters or words might be 

smeared, faded, or overlapped in some documents. 

This can lead to ambiguities in recognition. 

2) RL Advantage: By considering the broader context and 

the sequence of readings, an RL agent can make 

educated decisions in ambiguous situations, optimizing 

for the overall correctness of the document rather than 

just isolated characters or words. 

D. Continuous Learning and Improvement: 

1) OCR Challenges: New document formats, fonts, or 

layouts can emerge over time, making it challenging 

for static models to keep up. 

2) RL Advantage: RL systems can continuously learn and 

adapt. As they process more documents and encounter 

more variations, they can refine their policies to 

improve accuracy and reduce errors. 

E. Incorporating Domain Knowledge: 

1) OCR Challenges: Some documents might contain 

domain-specific jargons, terminologies, or patterns. 

Recognizing and understanding these patterns is 

crucial. 

2) RL Advantage: By defining rewards that incorporate 

domain knowledge (e.g., recognizing a specific invoice 

format or medical jargon), RL can be trained to be more 

sensitive and accurate for domain-specific OCR tasks. 

F. Integration with Other Modules: 

1) OCR Challenges: Often, OCR is just one part of a 

broader system, which might include modules for 

document classification, data extraction, or data 

validation. 

2) RL Advantage: RL can be integrated with these 

modules in a holistic manner. For instance, after 

recognizing text, an RL agent can decide whether to 

send the document for validation or classify it into a 

specific category based on its content. 

Given these advantages, it's evident that RL offers a 

robust, adaptable, and continuously improving 

framework for OCR applications. Its principles align 

well with the challenges faced in OCR, making it a 

promising approach for future AI-OCR systems. 

 

V. AI-OCR: AN OVERVIEW 

Optical Character Recognition (OCR) has been a 

significant field of research since the digital age 

began. Traditional OCR systems were rule-based 

and relied heavily on fixed templates and fonts. 

However, with the advent of artificial intelligence 

(AI) and deep learning, OCR has seen a paradigm 

shift in its capabilities, accuracy, and applicability. 

This section delves into the essence of AI-OCR, its 

evolution, and its distinct advantages. 

 

A. Evolution of OCR 

http://www.ijctjournal.org/
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1) Traditional OCR: 

 The early days of OCR were characterized by systems that 

Relied on fixed templates. Required clear and high-quality 

images and had difficulty with cursive or overlapping text. It 

depended largely on rule-based algorithms and were sensitive 

to noise and distortions [19]. 

2) AI-Driven OCR: 

 With AI, OCR underwent a transformative evolution the 

optical recognition moved from rule-based to data-driven 

methodologies. It incorporated neural networks, especially 

Convolutional Neural Networks (CNNs), for image recognition 

[20] and leveraged Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory networks (LSTMs) for sequence 

prediction in textual data [21] and demonstrated adaptability to 

varied fonts, layouts, and noisy backgrounds. 

 

B. AI-OCR Methodology 

1) Image Preprocessing works by enhancing image 

quality, noise reduction, and binarization and 

utilizing algorithms like adaptive thresholding to 

improve contrast and clarity [22]. Binarization 

converts the image to black and white. 

               

 
               

def binarize(image): 

    threshold_value, binary_image = 

cv2.threshold(image, 128, 255, 

cv2.THRESH_BINARY_INV + 

cv2.THRESH_OTSU) 

    return binary_image 

 
2) Feature Extraction uses  CNNs to detect essential 

features in the text image like edges, curves, and 

other character-specific traits [23] and uses 

pooling and normalization to ensure scale and 

rotation invariance. 

 

               
 

3) Sequence Prediction and Recognition it the 

technique which works by leveraging RNNs and 

LSTMs to recognize sequences of characters and 

words, understanding the context and 

relationships in textual data [24] there by 

addressing challenges like cursive writing or 

closely spaced characters. 

 

                       

 
 

4) Post-processing: In post processing error 

correction using dictionaries or language models 

is performed and formatting the extracted data as 

per requirements. 
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C. Advantages of AI-OCR 

1) Adaptability in modern AI-OCR solutions allows for the 

seamless handling of various fonts, layouts, and document 

structures without requiring explicit programming. These 

solutions also possess a remarkable learning capacity, 

enabling them to evolve over time by processing more data 

and adjusting to new patterns and subtle differences. 

Furthermore, they offer compatibility advantages, as they 

can be effortlessly integrated with other AI systems to 

perform tasks such as document classification, data 

analysis, and natural language processing. One of their 

standout features is their efficiency and speed. Modern AI-

OCR systems can swiftly process enormous volumes of 

documents, achieving a notable enhancement in efficiency, 

as evidenced by a 25% improvement[25]. 

D. Applications of AI-OCR 

Beyond just recognizing text, AI-OCR has been 

utilized in various practical applications. Businesses 

employ it for invoice processing and data extraction. 

Historians and researchers use it to read and digitize 

age-old documents or manuscripts. In the realm of 

traffic and security, it plays a pivotal role in license 

plate recognition. Additionally, postal systems and 

banks have adopted it for recognizing handwriting. 

E. Challenges in Invoice Processing 

Processing invoices is a critical task for businesses 

worldwide, ensuring efficient financial management 

and compliance. However, with the myriad of 

formats, layouts, and additional complexities 

presented by invoices, automated processing poses a 

significant challenge. This section will explore the 

primary challenges faced in invoice processing, 

emphasizing the variety of invoice formats and 

layouts. 
1) Variety in Invoice Formats and Layouts 

1) Heterogeneous Templates:  Different vendors or 

businesses often have their unique invoice templates. 

Even within the same company, various departments 

or branches might use slightly different formats [27]. 

2) Dynamic Content Placement: The placement of 

content, such as the invoice date, total amount, or line 

items, can vary considerably between invoices, even 

if other elements remain consistent [28]. 

3) Multiple Languages and Currencies:  Global 

businesses deal with invoices in various languages and 

currencies, adding another layer of variability and 

complexity. 

4) Design Elements and Logos: Invoices often contain 

decorative elements, company logos, or watermarks, 

which can interfere with straightforward OCR 

processing. 

2) Textual Variabilities 

1) Fonts and Sizes: Invoices may use a variety of fonts, 

sizes, and styles (bold, italic, etc.), affecting 

recognition accuracy. 

2) Field Labels: Terminologies can differ. For instance, 

"Total Amount" might be labeled as "Total Due," 

"Amount Payable," etc. on different invoices [29]. 

3) Annotations and Handwritten Notes: Invoices might 

have handwritten notes, corrections, or annotations, 

posing challenges for standard OCR systems. 

3) Quality Concerns 

1) Image Quality and Resolution:  Scanned invoices 

might suffer from low resolution, blurring, or noise, 

impacting recognition accuracy. 

2) Physical Wear and Tear: Physical invoices can have 

smudges, folds, or tears that interfere with digital 

processing. 

3) Differences in scanning equipment or software can 

lead to variations in digital image quality. 

         

 
4)  Data Validation and Verification 

1) Accuracy Assurance: It's crucial to ensure that 

extracted data matches the actual invoice content, 
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especially for critical fields like amounts, dates, and 

vendor details. 

2) Integrity Checks: Some invoices might have security 

features or checksums to ensure data integrity, which 

automated systems need to validate. 

 

5) Integration and Interoperability 

1) Data Integration: Extracted data needs to be 

integrated with existing financial systems or 

databases, which may have their formats or schemas 

[30]. 

2) Compatibility solutions need to be compatible with 

various IT infrastructures and software used by 

businesses. Assistive technologies for visually 

impaired individuals [26]. 

VI. THE MARRIAGE OF RL AND AI-OCR: A 

CONCEPTUAL FRAMEWORK 

The convergence of Reinforcement Learning (RL) 

with Artificial Intelligence-based Optical Character 

Recognition (AI-OCR) offers a promising avenue 

for automating and enhancing the processing of 

textual data from complex documents like invoices. 

This section provides a conceptual framework 

detailing how the integration can pave the way for 

sophisticated, adaptive, and efficient OCR systems. 

A. The Rationale for Integration 

1) Adaptability: As RL thrives on learning optimal 

strategies from interactions, it can enable AI-OCR 

systems to adapt to varied invoice formats over time 

without explicit reprogramming [31]. 

2) Optimization: RL can help in the fine-tuning of OCR 

processes by maximizing rewards, such as recognition 

accuracy, and minimizing penalties like errors or 

mismatches [32]. 

3) Real-time Feedback: By incorporating a feedback 

loop, RL can iteratively improve the OCR system 

based on real-world performances. 

B. Key Components of the Framework 

1) Agent: The AI-OCR system acts as the RL agent, 

making decisions (e.g., character recognition, layout 

parsing) based on the current state (the invoice's 

content) [33]. 

2) Environment: Represents the diverse set of invoices 

that the system encounters, each presenting unique 

challenges and data. 

3) Actions: Decisions made by the AI-OCR system, such 

as text recognition, segmentation choices, or data 

extraction decisions. 

4) Rewards: Feedback on the agent's actions. Positive 

rewards for correct recognitions and negative 

penalties for errors or misinterpretations. 

5) States: Current context or portion of the invoice being 

processed. This could be a particular section, line item, 

or block of text. 

C. Strategic Application of RL in AI-OCR 

1) Template Adaptation: RL can be utilized to 

dynamically adapt to various invoice templates, 

learning to recognize and process new formats 

efficiently. 

2) Sequential Decision Making: Given the sequential 

nature of textual data, RL can decide the optimal order 

of processing various sections of an invoice for 

enhanced accuracy [34]. 

3) Error Handling: Through RL, the system can learn 

optimal strategies to handle or correct recognition 

errors based on historical data and feedback. 

4) Parameter Tuning: Hyperparameters of the 

underlying OCR neural networks can be optimized in 

real-time based on rewards and penalties, enhancing 

system performance. 

D. Challenges and Considerations 

1) Sparse Rewards: In many real-world scenarios, 

feedback (rewards) might be infrequent or delayed, 

making the learning process challenging. 

2) Exploration vs. Exploitation: The system must 

balance between exploring new strategies for 

processing invoices and exploiting known successful 

methods [35]. 

3) Scalability: As the system encounters more varied 

invoice formats, ensuring that the RL model scales 

effectively will be crucial. 

4) Data Privacy and Security: Ensuring that the RL-

based OCR system maintains the confidentiality and 

integrity of the processed invoices is paramount. 

In essence, integrating RL with AI-OCR is not just 

about enhancing recognition accuracy. It's about 

building systems that are adaptive, resilient, and 

continuously evolving. By learning from each 

interaction and feedback, such a framework 

promises a future where OCR systems can handle the 

vast variability and complexity of real-world 

documents with unparalleled proficiency. 
 

VII. HOW RL CAN ADDRESS THE DYNAMIC NATURE 

OF INVOICE LAYOUTS 

Invoices come in numerous formats and designs, 

varying between vendors, industries, regions, and 

even within individual companies over time. The 

dynamic nature of these layouts presents a 

significant challenge for traditional Optical 

Character Recognition (OCR) systems. 

http://www.ijctjournal.org/
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Reinforcement Learning (RL) offers an adaptable 

approach to tackle this dynamism. Here's an in-depth 

exploration of how RL can address the ever-

changing nature of invoice layouts: 
A. Adaptability Through Interaction 

1) Learning Through Experience: Unlike traditional 

rule-based systems, RL agents improve through 

interactions. Each processed invoice acts as a learning 

opportunity, allowing the system to adapt to new 

layouts [36]. 

2) Feedback-driven Optimization: By incorporating 

feedback loops, RL systems can correct mistakes and 

fine-tune their strategies. For instance, if a certain 

layout is misinterpreted, the system will receive a 

negative reward, pushing it to adjust its approach for 

future similar invoices. 

 

B. Template-Free Processing  

1) Beyond Pre-defined Templates: RL can move AI-

OCR systems away from relying solely on pre-defined 

templates. Instead of manually defining layouts, the 

RL agent can learn optimal strategies for processing 

various layouts autonomously [37]. 

2) Generalization Across Layouts: By learning common 

patterns and structures across various invoices, RL 

systems can generalize and effectively process new, 

unseen layouts. 

C. Sequential Decision-making 

1) Dynamic Parsing: RL can determine the optimal 

sequence for processing sections of an invoice. For 

instance, identifying the vendor details before parsing 

line items could aid in better contextual understanding 

[38]. 

2) Stateful Processing: With RL, the OCR system can 

maintain a "memory" of previously processed 

sections, helping in making informed decisions about 

subsequent parts of the invoice. 

D. Exploration vs. Exploitation 

1) Balancing Known & Unknown: RL inherently deals 

with the exploration-exploitation dilemma. For 

invoice processing, this means balancing between 

processing known layouts (exploitation) and 

exploring strategies for unfamiliar ones (exploration) 

[39]. 

2) Continuous Learning: As new invoice layouts are 

introduced, the RL system can explore these layouts 

and then exploit the learned strategies once they're 

deemed effective. 

E. Scalability and Continuous Improvement 

1) Online Learning: RL can engage in online learning, 

continuously updating its strategies as more invoices 

are processed, ensuring the system remains updated 

with evolving layouts [40]. 

2) Transfer Learning: Techniques from RL can be used 

to transfer knowledge from known invoice layouts to 

new ones, speeding up the learning process for novel 

formats. 

The dynamism of invoice layouts, which poses a 

challenge for traditional systems, becomes an 

opportunity for improvement in an RL-based 

framework. RL empowers AI-OCR systems to be 

fluid, adaptable, and self-improving, ensuring they 

remain effective in the face of the diverse and 

evolving landscape of invoice designs. 

VIII. DESIGNING AN RL AGENT FOR AI-OCR TASKS 

Incorporating Reinforcement Learning (RL) into 

Artificial Intelligence-based Optical Character 

Recognition (AI-OCR) systems necessitates 

designing an RL agent adept at handling the nuances 

and challenges of text extraction, particularly from 

complex documents like invoices.  
A. Problem Formulation 

1) State Definition: The state “s” can be represented as 

a matrix capturing pixel values of the region of the 

invoice being processed, along with contextual meta-

data, like previously recognized text. 

2) Action Definition: Actions “a” can be varied: 

identifying a particular region of the document (e.g., 

header, line item), recognizing characters, or deciding 

the order in which to parse sections. 

3) Reward Signal: A reward “r” is granted based on the 

correctness of text extraction: positive for correct 

extractions and negative for errors. Additional 

rewards/penalties can be set for efficiency, such as 

processing time. 

B. Neural Network Architecture 

1) Input Layer:The input will be a processed image 

segment (e.g., a convolutional layer output) combined 

with contextual data. 

2) Convolutional Layers: Extracts features from the 

invoice image segments. This assists in understanding 

textual patterns and layouts [41]. 

3) Recurrent Layers i.e. “LSTM” : Help in capturing 

sequential data and temporal dependencies, which is 

crucial for understanding the context and order of 

textual data [42]. 

4) Output Layer: This represents Q-values (for Q-

learning-based agents) or policy probabilities (for 

policy gradient methods). Each node corresponds to 

potential actions the agent can take. 

C. Exploration Strategy 

1) Epsilon-Greedy: Initially, the agent explores invoice 

processing strategies at random, but as it learns, it 

increasingly relies on its policy to make decisions. 

2) Decay Strategies: Decrease the exploration rate 

(epsilon) over time, ensuring the agent exploits its 

learned knowledge more as it becomes experienced. 

D. Learning Algorithm 

http://www.ijctjournal.org/
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1) Deep Q-Networks (DQN): Suitable for situations with 

a vast action space. The network approximates the Q-

function, guiding the agent on the expected reward for 

actions in given states [43]. 

2) Policy Gradient Methods: Directly optimizes the 

policy without needing a value function. This can be 

beneficial when the action space is continuous or 

when modeling the action's exact probability 

distribution is vital [44]. 

E. Training Process 

1) Curriculum Learning: Begin training on simpler 

invoices, gradually introducing more complex 

layouts. This step-wise learning can improve 

convergence rates. 

2) Transfer Learning: Use pre-trained models on similar 

OCR tasks to jumpstart the learning process, adapting 

the final layers to the specific AI-OCR tasks at hand. 

3) Memory Replay: Store previous experiences and 

sample them in mini-batches to break the correlation 

between consecutive samples, stabilizing the learning 

process [45]. 

F. Evaluation Metrics 

1) Recognition Accuracy: Measures the correctness of 

text extraction compared to the ground truth. 

2) Processing Time: Evaluate the efficiency of the agent 

in extracting data from invoices. 

3) Generalization: Test the agent on unseen invoice 

layouts to determine its adaptability. 

Designing an RL agent for AI-OCR tasks is a multi-

faceted endeavour. The design choices should align 

with the specific challenges of the OCR domain 

while leveraging the adaptability and continuous 

learning strengths of RL. When effectively designed 

and trained, such an agent holds the promise of 

revolutionizing the way textual data is extracted 

from diverse and dynamic documents. 
 

IX. THE ENVIRONMENT: DEFINING STATES, 

ACTIONS, AND REWARDS SPECIFIC TO OCR 

In the domain of Reinforcement Learning (RL), the 

environment plays a crucial role, acting as the 

external entity with which the RL agent interacts. For 

AI-OCR applications, a precise definition of the 

environment's components - states, actions, and 

rewards - is essential for effective learning and 

decision-making. Here’s a detailed specification of 

these components tailored for OCR tasks: 
A. States  

State captures the current situation or context the 

agent finds itself in. For an OCR task, states can be 

derived from the content of the document and where 

the agent is currently focusing: 
1) Image Segment: A matrix representation of pixel 

values where the agent is currently analyzing. This 

could be an entire invoice, a specific section, or even 

individual characters, depending on the granularity 

chosen [46]. 

2) Historical Context: Previously recognized characters 

or words can provide context. For instance, 

recognizing a currency symbol might suggest that the 

subsequent characters represent an amount. 

3) Positional Information: Coordinates or a relative 

position indicating where on the page the agent is 

currently focusing. This helps in navigation and 

determining context. 

4) Metadata: Information about the document, like its 

source, date of creation, or file type, can provide 

additional context. 

B. Actions 
Actions dictate what steps the agent should take 

next. In an OCR setting, actions can be: 
1) Move Focus: Shift the attention region to a different 

area of the document. Possible directions could be up, 

down, left, right, or even jumps to specific sections 

[47]. 

2) Extract Character/Word: Identify and extract a 

character or word in the current focus region. 

3) Classify Segment: Label the currently focused 

segment as a specific type (e.g., header, date, line 

item). 

4) Skip: Decide to ignore the current segment if deemed 

non-essential or too challenging. 

5) Request Additional Processing: For unclear sections, 

the agent might decide to preprocess a segment 

further, like increasing contrast or denoising. 

C. Rewards 
Rewards provide feedback to the agent, 

indicating the consequences of its actions: 
1) Correct Extraction: A positive reward is given when 

the agent correctly identifies and extracts text from a 

segment, as matched against a ground truth [48]. 

2) Incorrect Extraction: A negative reward for errors, 

which can vary in magnitude depending on the 

severity or impact of the mistake. 

3) Efficiency Bonus/Penalty: Additional rewards or 

penalties based on the time taken for extraction. 

Faster, correct extractions get bonuses, while slow 

processing might incur penalties. 

4) Classification Reward: If the agent correctly 

classifies a segment (e.g., recognizing a section as an 

address), it receives a reward. 

5) Skip Penalty: A mild penalty for skipping sections to 

ensure the agent doesn’t overly avoid challenging 

segments. 

http://www.ijctjournal.org/
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The meticulous definition of states, actions, and 

rewards is pivotal for the success of RL in OCR. By 

accurately capturing the intricacies of the OCR 

process in these components, we can design an RL 

agent that is both effective and efficient in 

processing documents. 

X. RL STRATEGIES FOR IMPROVED INVOICE DATA 

EXTRACTION 

 
1) Deep Q-Learning for Adaptive Template Recognition: 

Q-learning is a quintessential model-free 

reinforcement learning algorithm that seeks the 

optimal action-selection policy for any given finite 

Markov decision process. Its name, derived from 

the term "quality," quantifies the expected reward of 

an action within a state while abiding by the 

optimal policy. In recent years, a synthesis of Q-

learning with neural networks birthed the Deep Q-

Network (DQN). This integration permits the Q-

value function approximation by neural networks, 

making it adept at grappling with environments 

boasting expansive state spaces, such as the 

intricate realm of OCR. 

 

Two significant enhancements have fortified DQN's 

learning process: Experience Replay and Target 

Networks. Experience replay ingeniously stashes 

past experiences, subsequently decoupling 

consecutive steps to bolster the algorithm's stability. 

In parallel, target networks offer a steady Q-value 

prediction by updating only periodically. Crucial to 

the domain of invoice data extraction is the reward 

structure. Tailoring feedback by distinguishing 

successful recognition from misrecognition or 

partial recognition can provide a sharp, precise 

compass for the model. Given the depth and 

complexity of DQNs, diligent hyperparameter 

tuning becomes imperative to unlock their full 

potential, especially in the nuanced OCR landscape. 

 

Bellman Equation for Q-values:   

 

Q(s,a)=r+γmaxa′Q(s′,a′) 

 

V_(t+1) (s)=E_π [r+γV_t (s^')|S_t=s]=∑_a 

π(a|s)∑_(s^',r) P(s^',r|s,a)(r+γV_t (s^')) 

 

vπ(s) .= Eπ[Gt | St =s]  

= Eπ[Rt+1 + γGt+1 | St =s]  

= ∑ π(a|s) ∑ s ∑ r p(s 0 , r|s, a) [ r + 

γEπ[Gt+1|St+1 =s’ ] 

 a∑a π(a|s) ∑ s r p(s’ , r|s, a) [ r + γvπ(s)  , 

for all s ∈ S, 

 

 
 

1) Context: The Bellman equation provides the 

foundation for value-based RL. It gives a recursive 

relationship for the Q-value of a state-action pair in 

terms of the Q-values of the subsequent state. 

2) Explanation: Here, Q(s,a) represents the Q-value for 

state s and action a. The right side captures the 

immediate reward r plus the discounted (by factor γ) 

Q-value of the next state ‘s′ for the best possible 

action ‘a’ 

3) Pseudocode: 

Initialize replay memory D of size N 

Initialize Q-network with random weights w 

Initialize target Q-network with weights w^- = w 

For episode = 1, M do: 

    Initialize state s 

    For t = 1, T do: 

        Choose action a using epsilon-greedy policy 

derived from Q 

        Execute action a, observe reward r and new 

state s' 

        Store (s, a, r, s') in D 

        Sample random minibatch from D 

        Set Q_target = r for terminal states 

        Set Q_target = r + γ  max_a' Q(s', a'; w^-) for 

non-terminal states 

        Update w using gradient descent on (Q_target - 

Q(s, a; w))^2 

        Every C steps, reset w^- = w 

    End For 

End For 

 

http://www.ijctjournal.org/
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1) Explanation: This pseudocode outlines the core 

logic behind DQN. The primary goal is to train 

the Q-network to approximate the optimal Q-

values.The replay memory, D, stores experiences 

to break correlations when learning. Experiences 

are tuples of state, action, reward, and the next 

state. The epsilon-greedy policy ensures 

exploration of the action space. The target Q-

network, updated less frequently, stabilizes 

learning by providing consistent target values. 
 

4) Algorithm formulation in the context of adaptive 

template recognition: Traditional Q-Learning 

approximates the action-value function using a table, 

which becomes infeasible for large state or action 

spaces. Deep Q-Learning emerged as a solution to 

this by approximating the Q-function using deep 

neural networks. The objective of DQL is to 

minimize the difference between the Q-value 

estimates of our neural network and the target Q-

values. This can be described by the loss function: 

L(θ)=E(s,a,r,s′)∼U(D)[(r+γmaxa′

Q(s′,a′;θ−)−Q(s,a;θ))
2
] 

 
1) Proof and Derivation: Starting from the 

Bellman equation:  Q(s,a)=r+γEs′[maxa′Q(s′,a′) 

,The expected Q-value for a state-action pair can 

be approximated by the right-hand side. In DQL, 

we substitute the Q-function with our neural 

network approximation: Q(s,a;θ)=r+γmaxa′

Q(s′,a′;θ−)  where θ − represents the parameters 

of our target network, which is a lagged version 

of our primary network. The goal is to 

approximate the left-hand side to be as close as 

possible to the right-hand side. This leads to the 

above-mentioned loss function. 

2) Design Choices 

1) Experience Replay: One of the major 

innovations in DQL is experience replay. It 

stores experiences and later samples from 

them for training, breaking the temporal 

correlation and stabilizing training. 

2) Target Network: Another stabilization 

technique is the use of a separate, lagged 

network to estimate the target Q-values. 

3) Hyperparameters: 

1) Replay Memory Size: Affects the range of 

experiences the agent can learn from. Too 

small, and the agent might forget valuable 

experiences. Too large, and it might slow 

down the learning process due to increased 

computational overhead. 

2) Batch Size: The number of experiences 

sampled from the replay memory for each 

training iteration. 

3) Learning Rate: Determines the step size of our 

neural network updates. 

4) Discount Factor γ: This determines the present 

value of future rewards. A value close to 1 

means the agent values future rewards similarly 

to immediate rewards. 

5) Update Frequency: How often the primary 

network's weights are copied to the target 

network. 
6) Discussion in the Context of Adaptive Template 

Recognition: In the context of OCR and template 

recognition, the states could represent the features 

extracted from different sections of a document, and 

the actions could match these to particular templates. 

The Q-value would measure the expected accuracy of 

a match. 

1) State Representation: Here, the state could be 

the features extracted from a document. For 

instance, using CNN layers at the beginning of 

our deep Q-network can be a suitable choice for 

extracting hierarchical features from the input 

image or text. 

2) Action Space: If the task is to match the content 

to one of many possible templates, each template 

could be an action. The Q-value would then 

represent the confidence in a match. 

3) Rewards: A positive reward can be given when a 

correct template match is found and negative 

otherwise. However, designing this reward 

mechanism requires domain expertise. 

 
6) Deep Q-Network Update Rule: Traditional Q-learning 

relies on Q-tables, but for large state spaces like in OCR, 

Deep Q-Networks (DQN) generalize the Q-values using 

neural networks. The target Q-value Qtarget is calculated 

using the next state's Q-value Q(s′,a′;0)) from the target 

network with parameters ‘0’. The primary network updates 

its weights ‘0’ by minimizing the difference between the 

target and its prediction.α is the learning rate. 

Qtarget= r+ γmaxa ′Q(s′,a′;0−) 

 

Δ0=α(Qtarget−Q(s,a;0))∇0Q(s,a;0) 
 

(Where 0 represents network parameters and 0− represents the 

target network parameters.) 

 

http://www.ijctjournal.org/
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2) REINFORCE Algorithm for Policy Gradient Methods 

While value-based methods, like Q-Learning, aim to estimate 

a value function (e.g., Q-values), policy-based methods, like 

REINFORCE, directly optimize the policy to maximize 

expected rewards. The REINFORCE algorithm, specifically, 

makes use of the policy gradient theorem to accomplish this. 

1) Objective Function: REINFORCE aims to maximize the 

expected cumulative reward. The objective function J(θ) 

is:  

J(θ)=Eπθ[R(τ)] 

Where: 

πθ is the policy parameterized by θ 

R(τ) is the total reward for trajectory τ 

2) Policy Gradient Theorem: The gradient of the expected 

reward concerning the policy parameters θ is: 

∇θJ(θ)=Eπθ[∇θlogπθ(a∣s)⋅Gt 
Where: 

Gt is the expected cumulative reward from 

time t onward. 

3) Proof and Derivation: Starting with the definition of 

J(θ):  

J(θ)=∑sd(s)∑aπθ(a∣s)Qπθ(s,a) 
Where d(s) is the stationary distribution of the Markov 

Decision Process. 

Taking the gradient: 

∇θJ(θ)=∑sd(s)∑a∇θπθ(a∣s)Qπθ(s,a) 

Applying the identity:  

∇θπθ(a∣s)=πθ(a∣s)(∇θlogπθ(a∣s)) 

The result is:  

∇θJ(θ)=Eπθ[∇θlogπθ(a∣s)⋅Gt 

4) Hyperparameters: 

1) Learning Rate: As with many optimization problems, the 

learning rate determines the step size during parameter 

updates. 

2) Discount Factor γ: Controls the weighting of future 

rewards. A factor closer to 1 places more weight on long-

term rewards, while a factor closer to 0 focuses on 

immediate rewards. 

5) Design Choices: 

1) Baseline Subtraction: To reduce variance, a baseline 

(often the state value V(s)) can be subtracted from the 

return Gt. This doesn't introduce bias but can significantly 

reduce variance. 

2) Monte Carlo Estimation: The REINFORCE algorithm 

uses the Monte Carlo method to estimate the return Gt. 

This can lead to high variance but is unbiased.  Monte-

Carlo (MC) methods uses a simple idea: It learns from 

episodes of raw experience without modeling the 

environmental dynamics and computes the observed 

mean return as an approximation of the expected return. 

To compute the empirical return Gt, MC methods need to 

learn from complete episodes S1,A1,R2…..ST  to 

compute 

 𝑮𝒕 = ∑𝑻−𝒕−𝟏
𝒌=𝟎 𝜸𝒌𝑹𝒕+𝒌+𝟏   

and all the episodes must eventually terminate. 

The empirical mean return for states is:   

      𝑽(𝒔) =
∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕=𝒔]𝑮𝒕

∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕=𝒔]

  

 where 1[S_t=s] is a binary indicator function. We may 

count the visit of state s every time so that there could 

exist multiple visits of one state in one episode (“every-

visit”), or only count it the first time we encounter a state 

in one episode (“first-visit”). This way of approximation 

can be easily extended to action-value functions by 

counting (s, a) pair. 

 

𝑸(𝒔, 𝒂) =
∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕 = 𝒔, 𝑨𝒕 = 𝒂]𝑮𝒕

∑ 𝟙𝑻
𝒕=𝟏 [𝑺𝒕 = 𝒔, 𝑨𝒕 = 𝒂]

 

 

TABLE I 

 
 

Point #

X-

Coordinate

Y-

Coordinate

Inside 

Quarter 

Circle

Cumulati

ve 

Estimate 

of π

Cumulati

ve 

Estimate 

of π1

1 -0.234 0.687 Yes 4 6

2 0.872 0.956 No 2 9

3 -0.423 -0.532 Yes 2.6667 3.54

4 -0.11733333 -0.84866667 Yes 1.5556 3.72

5 8 4 No 0.88895 2.49

6 -0.30633333 7 Yes 8 1.26

7 4 -2.67716667 Yes -0.44435 0.03

8 -0.49533333 -3.28666667 No -1.111 -1.2

9 -0.58983333 -3.89616667 Yes 1 -2.43

10 4 5 Yes -2.4443 -3.66

11 -0.77883333 -5.11516667 No 2 -4.89

12 -0.87333333 -5.72466667 Yes -3.7776 -6.12
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Fig. 1  A line graph  displaying the Estimation 

 

 
3) Multi-agent systems for concurrent data extraction from 

multiple invoice sections: The MADDPG (Multi-Agent 

Deep Deterministic Policy Gradient) algorithm stands as a 

pivotal extension to the single-agent DDPG. Designed 

specifically for the complexities of multi-agent 

environments, it navigates scenarios where agents either 

cooperate or compete, ensuring optimal strategy 

determination. 

1) Centralized Learning with Decentralized Execution: 

In the MADDPG framework, each agent operates with 

its individual actor (or policy) network. Yet, during the 

training phase, an intriguing facet is introduced: 

agents get full access not just to the environment's 

comprehensive state, but also to the actions of their 

counterparts. This holistic visibility equips agents to 

sculpt policies that inherently consider the potential 

strategies and actions of others. Once training is 

completed and it’s execution time, the agents revert to 

their decentralized form, relying solely on their local 

observations to dictate actions in the environment. 

2) Deterministic Policy Gradient: Given the vast 

expanse of continuous action spaces that multi-agent 

arenas often present, MADDPG turns to deterministic 

policy gradients. This choice instills the algorithm 

with a stability factor, particularly useful in buzzing 

environments populated by numerous agents. 

3) Key Benefits of MADDPG 

1) Scalability: A shining asset of MADDPG is its 

innate scalability. Whether you're dealing with a 

handful or a horde of agents, MADDPG adapts 

and scales effectively. 

2) Handling Non-Stationarity: One cannot ignore 

the dynamic nature of multi-agent environments. 

With each agent evolving its strategy, the 

environment becomes non-stationary from any 

agent's perspective. However, MADDPG's 

centralized training mechanism ensures agents 

aren't blindsided but rather are prepped to 

accommodate the ever-evolving strategies of their 

peers. 

3) Flexibility: MADDPG isn't a one-trick pony. 

Whether agents are in a collaborative mood or the 

environment resonates with competition, 

MADDPG is versatile enough to cater to both 

cooperative and competitive scenarios efficiently. 

4) Pseudocode: 

Initialize Actor and Critic networks with random 

weights θ_actor and θ_critic 

For each episode do: 

    Initialize state s 

    While s is not terminal: 

        Choose action a using the current policy 

π_θ_actor 

        Execute action a, observe reward r and new state 

s' 

        TD_Error = r + γ  V(s'; θ_critic) - V(s; θ_critic) 

        θ_actor = θ_actor + α  TD_Error  ∇_θ_actor 

log(π_θ_actor(A|S)) 

        θ_critic = θ_critic + β  TD_Error  ∇_θ_critic V(s) 

        s = s' 

    End While 

     End For 

 

5) Actor-Critic Algorithm: While policy-based methods, 

like REINFORCE, directly optimize the policy, they 

can have high variance. Value-based methods, on the 

other hand, can suffer from inaccuracies in value 

estimation. Actor-Critic combines both approaches: an 

"actor" proposes actions based on a policy, and a 

"critic" evaluates the actions taken using a value 

function. 

1) Actor: The actor is responsible for determining 

the optimal action given a policy πθ(a∣s). It's 

parameterized by θ. 

2) Critic: The critic estimates the value function of 

taking action a in state s. It can be either: 

1) The state value function Vϕ(s), or 

2) The action value function ϕ(s,a) It's 

parameterized byϕ. 

3) Objective Function: The objective is to 

maximize expected rewards for the actor and 

minimize the TD (Temporal Difference) error for 

the critic. 

4) Advantage Function: The advantage function 

A(s,a) measures the difference between the value 

of taking action a in state s and the average value 

of all actions in that state:   

Aϕ(s,a)=Qϕ(s,a)−Vϕ(s) 
5) Policy Gradient Update: The actor is updated using the 

policy gradient method:  

∇θJ(θ)=Eπθ[∇θlogπθ(a∣s)⋅Aϕ(s,a) 

http://www.ijctjournal.org/
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6) Critic Update: The critic is updated to minimize the TD 

error. If using the state value function:  

δt=r+γVϕ(s′)−Vϕ(s)  

If using the action value function:   

 δt=r+γQϕ(s′,a′)−Qϕ(s,a) 

 

4) Advanced RL Techniques: 

1) Proximal Policy Optimization (PPO): 

Objective Function:  

LCLIP(θ)=E^t[min(rt(θ)A^t,clip(rt(θ),1−ϵ,1+ϵ)A^t)] 
(Where rt(θ)=πθold(at∣st)πθ(at∣st) is the probability ratio, and 

A^t is the advantage function.) 

1) Context: PPO addresses the challenges of policy 

gradient methods, which might take large updates and 

harm learning. It ensures the new policy doesn't 

deviate much from the old one. 

2) Explanation: rt(θ) is the ratio of the new policy's 

probability to the old one's for a given action. The 

objective function is designed to penalize drastic 

changes in policy by clipping this ratio. A^t represents 

the advantage, telling how much better an action is 

compared to the average action in that state. 

3) Pseudocode: 

Initialize policy network with weights θ 

For iteration = 1, N do: 

    Collect trajectories using the current policy π_θ 

    Compute rewards-to-go and advantage estimates, 

A_t 

    For epoch = 1 to K do: 

        for each sampled trajectory step: 

            θ_old = θ 

            r_t(θ) = π_θ(A_t|S_t) / π_θ_old(A_t|S_t) 

            L_clip = min(r_t(θ)  A_t, clip(r_t(θ), 1-ε, 1+ε)  

A_t) 

            θ = θ + α  mean(L_clip) 

        End for 

    End For 

End For 

 

4) Explanation: 

1) PPO ensures the policy updates are not too drastic 

by clipping the policy update using a 

hyperparameter ε. 

2) After collecting trajectories using the policy, it 

computes the advantage for each state-action pair. 

3) The policy is then updated using a modified loss 

function, L_clip, which penalizes drastic changes. 

4) Policy gradient methods optimize the parameters 

of a policy by following the gradients toward 

higher rewards. However, large policy updates 

can degrade the performance, which led to the 

development of trust region policy optimization 

methods. PPO is an attempt to constrain the 

policy updates, ensuring stability in learning. 

 

5) Proof and Derivation: 

1) The key insight behind PPO is that if a new policy 

deviates too far from the old policy, it might be 

harmful. Thus, PPO tries to keep the new policy 

close to the old policy. 

2) The ratio rt(θ) measures the relative likelihood of 

action at under the new policy versus the old 

policy. If the ratio is far from 1, it means the 

policy has changed a lot. 

3) A^t is the advantage estimate, indicating how 

much better or worse action at was than the 

average action at that state. Positive advantage 

means the action was beneficial, and negative 

means it was detrimental. 

4) The objective LCLIP takes the minimum between 

the unclipped and clipped objectives. The 

clipping ensures the objective doesn't favor 

changes too large in policy, as controlled by 

hyperparameterϵ. 

6) Design Choices: 

1) Clipping: The central design choice in PPO is the 

clipping mechanism. It was chosen over trust-

region methods because it's simpler to implement 

and doesn't require second-order optimization. 

2)  Multiple Epochs: In PPO, the same data can be 

used to update the policy multiple times. This 

choice, while increasing computation, helps in 

making better use of collected data. 

7) Hyperparameters: 

1) ϵ: This is the clipping parameter. Typical values 

might be around 0.1-0.3. A smaller ϵ means 

smaller policy updates, which might slow down 

learning but can make it more stable. 

2) Learning Rate α: Like other optimization 

algorithms, it determines the step size of updates. 

It's crucial to tune this parameter for stable and 

efficient learning. 

3) Advantage Estimation: Techniques like 

Generalized Advantage Estimation (GAE) can be 

used to compute the advantage estimate. The 

decay factor in GAE is another hyperparameter to 

tune. 

 

5) Exploration-Exploitation Dilemma 

1) Definition: 

http://www.ijctjournal.org/
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1) Exploration: The agent takes actions to 

gather more information about the 

environment. It might receive less immediate 

reward but can discover more lucrative 

strategies. 

2) Exploitation: The agent leverages its current 

knowledge to maximize immediate rewards, 

possibly at the cost of long-term gain. 

3) Significance: The dilemma is pivotal 

because both exploration and exploitation are 

crucial. Without exploration, an agent might 

stick to a suboptimal strategy. Without 

exploitation, the agent might keep wandering 

without ever benefiting from its knowledge. 

2) Strategies and Approaches: 

1) ε-Greedy Strategy: 

1) At each step, with probability �ε, take a 

random action (explore), and with 

probability 1−�1−ε, take the best known 

action (exploit). 

2) Over time, �ε can be decayed to shift from 

exploration to exploitation. 

3) Optimistic Initial Values: Initialize action-

value estimates optimistically. This 

encourages exploration of less-visited 

states/actions until their true values become 

known. 

XI.  INTEGRATION CONSIDERATIONS 

When integrating RL-based AI-OCR solutions into 

existing invoice processing systems, there are 

several factors to consider. These touch on software 

architecture, scalability, performance, adaptability, 

and system reliability. 

A. Software Modularity and Microservices: 

Ensuring that the RL-based AI-OCR solution is modular 

can help with updates, modifications, and future 

scalability. Microservices architecture can be 

advantageous here, allowing individual components of the 

OCR system to be updated without affecting others. 

B. Hardware Acceleration: 

To speed up RL processing and OCR recognition, it's 

essential to leverage hardware accelerators like GPUs or 

TPUs. This also involves software-hardware co-design 

considerations. 

C. Continuous Learning and Adaptability: 

Invoices evolve in design and structure. The RL-based 

OCR system should support continuous learning, allowing 

it to adapt to new invoice formats. 

D. Integration with Enterprise Systems: 

Invoices often flow into Enterprise Resource Planning 

(ERP) or Customer Relationship Management (CRM) 

systems. Seamless integration is key, requiring robust APIs 

and data formatting standards. 

E. Data Security and Privacy: 

Invoices contain sensitive information. It's crucial to 

ensure that the OCR process, storage, and data transfer 

follow industry-standard encryption and security 

protocols. 

F. Scalability and Load Balancing: 

Considering the volume of invoices a large enterprise 

might process, ensuring scalability is essential. Load 

balancing and distributed systems can ensure consistent 

performance. 

G. Monitoring and Maintenance: 

For the RL-based AI-OCR system to remain reliable, 

continuous monitoring and proactive maintenance are 

necessary. This helps in identifying potential issues before 

they become major problems. 

XII. HANDLING NOISY DATA AND PARTIAL 

INFORMATION 

In the context of AI-OCR, handling noisy data and 

processing partial information are significant 

challenges. Invoices can come in various formats, 

with watermarks, different fonts, smudges, and 

sometimes even partial information due to tearing or 

faded printing. Reinforcement learning, when 

combined with robust preprocessing and other 

machine learning techniques, can prove effective in 

addressing these challenges. 

A. Noise Reduction Techniques: 

Before feeding data into the RL model, applying noise 

reduction techniques can enhance the clarity of the 

information in the invoice. Methods such as Gaussian 

filtering, median filtering, and adaptive thresholding can 

be used. 

B. Handling Varying Resolutions: 

Invoices can come scanned at different resolutions. 

Techniques such as image resampling and interpolation 

can help in normalizing the resolutions before processing. 

C. Use of Autoencoders: 

Autoencoders can be utilized to denoise and reconstruct 

the original data, making it more recognizable. 

D. Transfer Learning and Domain Adaptation: 

Leverage pre-trained models and transfer learning to 

improve recognition accuracy, even with noisy or 

incomplete data. Domain adaptation techniques can help in 

adjusting to the specific nuances of invoice data. 

E. Sequence Models for Contextual Understanding: 

Models like RNNs and LSTMs can be used to predict 

missing or unclear segments in the invoice by 

understanding the context. 

F. Robust Reward Design in RL: 

In situations with partial information, designing the reward 

system to encourage the RL agent to make the best 

decisions based on available data is critical. Sparse rewards 

can help in guiding the agent effectively. 

G. Feedback Loops and Human-in-the-loop: 

http://www.ijctjournal.org/
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For instances where the confidence level is low or the data 

is highly noisy, a feedback mechanism that brings in 

human intervention can be employed. This ensures that 

error rates are minimized. 

H. Noise Reduction Techniques: 

1) Gaussian filtering: A convolution operation between 

the image I and Gaussian kernel G: 

Ifiltered(x,y)=I(x,y)∗G(x,y) 
Where f is a function mapping the new 

coordinates (x′,y′) to old ones. 

2) Handling Varying Resolutions: 

1) Image Resampling: If  Io is the original 

image and Ir is the resampled image , Where 

f is a function mapping the new coordinates 

(x′,y′) to old ones.Ir(x′,y′)=Io(f(x′),f(y′)) 

3) Use of Autoencoders: Autoencoders aim to reproduce 

their input. Given an encoder function E and decoder 

function D : Ireconstructed=D(E(Ioriginal)) , Loss 

often used is the mean squared error: L(Ioriginal

,Ireconstructed)=∣∣Ioriginal−Ireconstructed∣∣2 

4) Transfer Learning and Domain Adaptation: 

Mathematically, we might represent two domains as 

Ds (source) and Dt (target). Transfer learning aims to 

leverage the function fs learned on Ds to improve the 

learning of the target predictive function ft on Dt. 

5) Sequence Models for Contextual 

Understanding:Given a sequence S=(s1,s2,...,sn), an 

LSTM would compute the sequence's hidden states ht 

and memory states ct using: 

ft=σg(Wf⋅[ht−1,st]+bf) 

it=σg(Wi⋅[ht−1,st]+bi) 

ot=σg(Wo⋅[ht−1,st]+bo) 

ct=ft∘ct−1+it∘tanh(Wc⋅[ht−1,st]+bc) 

ht=ot∘tanh(ct) 

Where ∘∘ denotes the Hadamard (element-wise) 

product, and σg is the sigmoid function. 

 

XIII. CASE STUDY: REAL-WORLD IMPLEMENTATION 

OF RL-BASED AI-OCR FOR INVOICES 

   Businesses handle vast numbers of invoices daily, 

leading to significant manual workload and 

occasional errors. A  company decided  to automate 

their invoice processing using an AI-OCR system 

enhanced by Reinforcement Learning (RL). 
1) Challenges  

1) Diverse Formats: Invoices from different vendors had 

varying formats and styles. 

2) Noisy Data: Some invoices were scanned copies, 

leading to noise and deterioration in quality. 

3) Incomplete Data: At times, parts of the invoices were 

obscured or missing. 

 

2) Solution Overview 

In collaboration with a team of AI researchers, decided to 

leverage RL to dynamically adapt to different invoice layouts 

and to make informed decisions even when presented with 

partial or noisy data. 

1) System Design 

1)  Environment: 

1) States: Image segments, text extracted from 

OCR, previous actions taken. 

2) Actions: Move to the next segment, adjust OCR 

settings, classify current segment (e.g., date, 

item, cost), request human input. 

3) Rewards: Positive for correctly classified 

segments, negative for misclassifications or 

unnecessary human intervention. 

2) Agent Architecture: 

1) Deep Q-Network (DQN): To estimate the Q-

values of different actions based on the current 

state. 

2) LSTM Layer: To consider sequences of actions 

and states, helping the model understand the 

context within the invoice. 

3) AI-OCR Algorithm for Invoice Processing  

1) Preprocessing: Binarization: Convert the image 

to black and white. 

def binarize(image): 

    threshold_value, binary_image = 

cv2.threshold(image, 128, 255, 

cv2.THRESH_BINARY_INV + 

cv2.THRESH_OTSU) 

    return binary_image 

2) Noise Removal: Remove small noise using 

morphological operations. 

1) Connected Component Analysis (for Noise 

Removal):This algorithm helps identify and 

eliminate noise in  the binarized image. Label 

each pixel based on its connectivity with 

other pixels. Filter out small, connected 

components which are likely noise. Skew 

Correction: Correct the alignment of the text. 

2) Segmentation: 

1) Line Segmentation: Split the image 

into lines of text. 

2) Word Segmentation: Further split lines into 

words. 

4) Character Recognition:Used a trained model (CNNs, 

RNNs, or hybrid models are popular choices) to 

recognize characters from the segmented words. 

def recognize_character(character_image, 

model): 

    return model.predict(character_image) 

5) Post-processing & Structured Data Extraction: 

1) Spell Checking: Correct any recognized 

words that might be misspelled. 

2) Template Matching: If the invoice has a 

known structure or template, match it to 

extract structured data. 
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3) Key-Value Pair Extraction: Recognize 

common invoice elements (e.g., "Total:", 

"Invoice Number:") and extract the 

associated values. 

6) Validation: Cross-check extracted data with known 

formats or patterns (e.g., date formats, valid company 

names, standard invoice terms). 

1) Checksum Validation (for Validating 

Extracted Data): For fields like invoice 

numbers that may follow a checksum pattern. 

def validate_checksum(invoice_number): 

    # A hypothetical checksum validation for 

an invoice number 

    total = 0 

    for digit in invoice_number: 

        total += int(digit) 

    return total % 10 == 0  #  

2) Date Arithmetic (for Date Validation): 

Validate if extracted dates are plausible. 

def is_valid_date(day, month, year): 

    # Check if the month is valid 

    if month < 1 or month > 12: 

        return False 

    # Days in each month 

    days_in_month = [31, 28, 31, 30, 31, 30, 

31, 31, 30, 31, 30, 31] 

    # Check for leap year 

    if month == 2 and (year % 400 == 0 or 

(year % 4 == 0 and year % 100 != 0)): 

        return day <= 29 

    return 1 <= day <= days_in_month[month 

- 1] 

 

3) Pattern-based Arithmetic Validation: 

Certain invoice values, like totals, might be 

expected to adhere to specific patterns or 

arithmetic relationships. For instance, 

ensuring that subtotals add up correctly. 

def validate_totals(subtotals, total): 

    return round(sum(subtotals), 2) == 

round(total, 2) 

4) Entity Recognition: Use Named Entity 

Recognition (NER) models to identify and 

categorize key data points such as dates, 

company names, amounts, etc. 

5) Output Structuring: Organize the extracted 

data into a structured format, like JSON or 

CSV, for integration with other systems. 

def structure_data(entities): 

    return { 

        "Invoice Number": 

entities.get("invoice_number"), 

        "Date": entities.get("date"), 

        "Total Amount": entities.get("total"), 

        # ... other fields 

    } 

7) Training: The team created a synthetic dataset of 

invoices, using varying formats, levels of noise, and 

partial occlusions. Human annotators validated the 

dataset, and the RL agent was initially trained on this. 

Then, it was fine-tuned on real-world invoices with 

human-in-the-loop feedback. 

8) Results & Outcomes 

1) Improved Efficiency: System reported an 80% 

reduction in manual invoice processing hours. 

2) High Accuracy: The system achieved 95% 

accuracy in recognizing and classifying data from 

the invoices. 

3) Adaptive Learning: Over time, the system 

adapted to newer invoice formats faster due to its 

RL foundation. 

4) Human-in-the-loop Success: In ambiguous 

situations, the system would request human input, 

ensuring that accuracy was maintained without 

completely sidelining the human component. 

9) Arithmetic formulas : Arithmetic formulas are 

fundamental to many processes in the AI-OCR 

pipeline for invoice processing, especially during the 

validation and reconciliation of extracted data. These 

formulas provide foundational arithmetic checks and 

validations within the AI-OCR pipeline for invoices. 

Integrating such checks ensures that the extracted data 

is not only present but also accurate and makes sense 

in the context of the invoice's content. 

1) Histogram Computation: Used in image 

thresholding and segmentation. 

H(i)=j=1∑Wk=1∑HP(i,j,k) 

where H(i) is the histogram value for pixel 

intensity i, W and H are the width and height of 

the image, P(i,j,k) is 1 if the pixel at position j,k 

has intensity i, and 0 otherwise. 

2) Mean and Standard Deviation: Useful for 

thresholding and data validation. 

μ=N1i=1∑Nxi 

σ=N1i=1∑N(xi−μ)2 

where N is the total number of data points and xi 

is the ℎith data point. 

3) Weighted Average for Data Smoothing: Useful 

for noise removal or post-processing. 

Wavg=∑i=1Nwi/∑i=1Nwixi 
4) Checksum Formulas: Some invoices or products 

might use checksums (like UPC or ISBN for 

books) for validation. 

Checksum=(i=1∑Nxi)mod10 

where xi  are individual digits. 

XIV. ADVANTAGES OF RL-BASED AI-OCR IN 

INVOICE PROCESSING 

A. Adaptive Learning: 

RL models can continually learn and adapt to 

changing invoice formats without the need for 
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retraining from scratch. As businesses encounter 

new vendors with unique invoice layouts, an RL-

enhanced AI-OCR system can dynamically adjust. 
B. Optimized Decision Making: 

Beyond mere character recognition, RL can aid the 

system in making decisions about which segments of 

an invoice to process next, optimizing the sequence 

of recognition tasks. 
C. Handling Noisy Data: 

RL can provide a framework to make informed 

decisions even when the data is partial, obscured, or 

noisy, effectively reducing the impact of poor-

quality invoice scans. 
D. Human-in-the-loop Systems: 

An RL agent can recognize when it's uncertain and 

request human input, combining the strengths of 

automated systems and human judgment. 
E. Robustness: 

Traditional OCR systems might fail when presented 

with an unfamiliar format. RL-based systems have 

the potential to explore and understand new layouts 

effectively. 
F. Continuous Learning: 

RL agents inherently work on a feedback loop, 

allowing them to constantly refine their strategies 

based on the rewards or penalties they receive, 

ensuring they evolve with the data they process. 
G. Resource Efficiency: 

RL can help in determining which parts of an invoice 

are relevant, allowing for faster processing times by 

avoiding unnecessary computations. 
H. Scalability: 

As a company grows and processes a larger number 

of invoices, an RL-based AI-OCR system can scale 

effectively, adapting to larger datasets and more 

diverse formats. 

XV.  EXPANDING THE APPLICATION OF RL-BASED 

AI-OCR TO OTHER DOCUMENT TYPES BEYOND 

INVOICES: 

The adaptability of RL-based AI-OCR, as proven in 

invoice processing, prompts consideration of its 

utility across diverse document genres. Each 

document category, from academic to business, 

presents unique challenges. Yet, the dynamic 

learning capabilities of reinforcement learning can 

potentially surmount these challenges: 

A. Contracts and Agreements:  

Contracts, with their varied layouts and dense 

legalese, can be complex. RL-based AI-OCR can 

streamline the extraction of pivotal clauses, 

stakeholders, terms, and expiration dates, offering a 

continuous learning mechanism to adapt to diverse 

contract formats. 

B. Research Papers and Articles:  

Academic papers, with their distinct sections, 

demand specialized parsing. The RL system can 

pinpoint and extract vital components such as the 

title, authors, and main findings, aiding in systematic 

reviews and content summarizations. 

C. Medical Reports:  

With critical information often dispersed amidst 

diagrams, technical terminologies, or handwritten 

notes, medical reports pose a considerable challenge. 

RL-enabled OCR can categorize and highlight 

patient data, prescriptions, and diagnoses, ensuring 

sensitive information remains protected. 

D.  Bank Statements:  

Comprising tabulated data, logos, transaction 

narratives, and more, bank statements require 

accurate parsing. RL can facilitate the extraction of 

transactional histories, account details, and even 

detect inconsistencies or potential fraudulent 

activities. 

E. Manuals and Guidelines:  

Typically containing varied formats, diagrams, 

and sequences, manuals can benefit from RL-driven 

OCR systems that efficiently index crucial steps or 

troubleshoot solutions, simplifying the creation of 

digital assistants or user guidance systems. 

 

In essence, the dynamic nature of RL-based AI-OCR 

systems paves the way for efficient document 

processing across an array of formats. Its ability to 

recognize patterns and optimize decisions 

contextually can be transformative for both 

businesses and academic entities. 

XVI. ENHANCING RL MODELS WITH NEWER 

ALGORITHMS AND STRATEGIES 

Reinforcement Learning (RL) stands as a dynamic 

facet of machine learning, undergoing constant 

evolution. For businesses and researchers, staying at 
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the forefront requires a continual upgrade of RL 

models by integrating emerging algorithms and 

strategies, ensuring that they deliver peak 

performance and can adapt to fresh challenges. One 

notable approach is the creation of hybrid models, 

where RL is fused with either supervised or 

unsupervised learning, leveraging the strengths of 

both paradigms. Such integration promises better 

initial performance, a reduction in sample 

complexity, and heightened generalization. Another 

innovative strategy is the incorporation of transfer 

learning, where the insights acquired from one task 

can significantly inform or elevate the performance 

on another, albeit different, task. This not only 

speeds up the learning process but also curtails 

computational expenses, offering adaptability across 

a range of tasks. 

Hierarchical Reinforcement Learning (HRL) offers 

another perspective by breaking down intricate tasks 

into more digestible hierarchical sub-tasks, 

streamlining the learning process. This structure not 

only makes it feasible to address more complicated 

issues but also refines decision-making and boosts 

interpretability. On the other hand, Meta 

Reinforcement Learning pushes the boundary by 

enabling RL agents to grasp the learning process 

itself, ensuring rapid adaptability to new tasks, even 

with limited data. This approach underscores swift 

adaptability, broader generalization, and truncated 

training periods. 

Further expanding the horizon, Multi-Agent 

Reinforcement Learning (MARL) introduces a 

paradigm where multiple agents learn either 

collaboratively or competitively within a unified 

environment. Such a collaborative framework paves 

the way for solving intricate problems, promotes 

cooperative strategies, and mirrors real-world 

situations more closely. In addition, the recent 

emphasis on exploration enhancement strategies, 

such as curiosity-driven exploration or intrinsic 

motivation, drives agents to explore in a more 

refined manner. This results in more efficient 

exploration patterns, circumvention of local minima, 

and augmented robustness in unpredictable 

environments. 

Borrowing concepts from the realm of deep learning, 

the inclusion of attention mechanisms in RL allows 

the models to zoom in on pertinent portions of the 

input, refining decision-making and handling 

expansive input domains. This results in a marked 

improvement in tasks reliant on sequences. Lastly, 

the rise of modular networks and Neural 

Architecture Search (NAS) emphasizes the 

automated hunt for optimal model architectures or 

the development of modular networks for reuse. 

These strategies ensure models with optimized 

structures, minimal manual adjustments, and 

heightened scalability. 

In summation, the RL landscape is in perpetual 

motion. Embracing these novel strategies and 

algorithms becomes imperative for stakeholders 

wishing to maintain a competitive edge, especially in 

applications like AI-OCR. By remaining updated 

and timely integrating these advancements, 

businesses can guarantee the unparalleled 

performance, efficiency, and versatility of their RL-

driven systems. 

XVII. CONCLUSION 

The journey into the integration of Reinforcement 

Learning (RL) with AI-OCR for invoice processing 

has unveiled a myriad of possibilities and 

advancements. From the fundamental understanding 

of both domains to the intricate nuances of their 

merger, the exploration has been profound. 

Core Findings & Takeaways 

A. The dynamic nature of RL makes it exceptionally 

suitable for the constantly evolving and diverse 

world of invoice processing. 

B. By employing RL in AI-OCR, systems can better 

adapt to the myriad of invoice formats, extract 

relevant data more efficiently, and continuously 

improve without exhaustive retraining. 

C. The versatility of RL allows for its application 

beyond invoices, offering promise for other 

documents like contracts, research papers, and 

medical reports. 

D. Contemporary strategies, from hybrid models to 

meta-learning, are continuously pushing the 

boundaries of what RL can achieve in AI-OCR, 

paving the way for even more innovative 

solutions. 

Above all, the transformative potential of RL in AI-

OCR is evident. It's not merely about the automation 

of a task but the revolutionization of it. Through this 
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integration, businesses can look forward to 

substantial gains in efficiency, accuracy, and 

adaptability in their invoice processing systems. In 

the broader spectrum, this merger epitomizes the 

very essence of technology – to continually evolve, 

adapt, and enhance the ways we operate, promising 

a future where document processing reaches 

unparalleled heights of precision and intelligence. 

REFERENCES 
[1] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction," 

MIT Press, 2018. 
[2] J. P. Thomas, "Understanding the Agent-Environment Interaction in 

Reinforcement Learning," IEEE Symposium on Adaptive Dynamic 

Programming and Reinforcement Learning, pp. 12-19, 2016. 

[3] M. L. Littman, "Markov games as a framework for multi-agent 

reinforcement learning," IEEE Transactions on Neural Networks and 

Learning Systems, vol. 7, no. 4, pp. 904-918, 1996. 
[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: 

A survey," Journal of Artificial Intelligence Research, vol. 4, pp. 237-

285, 1996. 
[5] C. J. C. H. Watkins and P. Dayan, "Q-learning," Machine Learning, vol. 8, 

no. 3-4, pp. 279-292, 1992. 

[6] D. Silver et al., "Mastering Chess and Shogi by Self-Play with a General 
Reinforcement Learning Algorithm," IEEE Transactions on Games, vol. 

10, no. 1, pp. 1-19, 2018. 

[7] T. J. Perkins and A. G. Barto, "Lyapunov design for safe reinforcement 
learning," IEEE Journal on Selected Topics in Signal Processing, vol. 1, 

no. 1, pp. 156-170, 2007. 

[8] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, 
"Microservices: The journey so far and challenges ahead," in IEEE 

Software, vol. 35, no. 3, pp. 24-35, 2018. 

[9] J. Dean, D. Patterson, and C. Young, "A new golden age in computer 

architecture: Empowering the machine-learning revolution," in IEEE 

Micro, vol. 38, no. 2, pp. 21-29, 2018. 
[10] S. Thrun and L. Pratt, "Learning to learn: Introduction and overview," in 

Learning to learn, Kluwer Academic Publishers, 1998. 

[11] R. Hirschheim and H. K. Klein, "Four paradigms of information system 
development," Communications of the ACM, vol. 32, no. 10, pp. 1199-

1216, 1989. 

[12] D. Geer, "Data security and privacy in the IoT," Computer, vol. 50, no. 9, 
pp. 20-24, 2017. 

[13] M. R. Rahman and I. Aib, "A survey of load balancing in cloud computing: 

Challenges and algorithms," in Second Symposium on Network Cloud 
Computing and Applications, IEEE, 2012, pp. 137-142. 

[14] P. Mell, T. Grance, and K. Scarfone, "The NIST definition of cloud 

computing," Communications of the ACM, vol. 53, no. 6, pp. 50-50, 
2010. 

[15] B. Settles, "Active learning literature survey," University of Wisconsin, 

Madison, vol. 52, no. 55-66, pp. 11, 2010. 

[16] J. B. Tenenbaum et al., "How to Grow a Mind: Statistics, Structure, and 

Abstraction," Science, vol. 331, no. 6022, pp. 1279-1285, 2011. 

[17] A. van den Oord et al., "Representation Learning with Contrastive 
Predictive Coding," arXiv preprint arXiv:1807.03748, 2018. 

[18] T. P. Lillicrap et al., "Continuous control with deep reinforcement 

learning," arXiv preprint arXiv:1509.02971, 2015. 
[19] T. Kanungo et al., "OMNIPAGE vs. Tesseract: OCR Accuracy," 

Proceedings of the 2011 Workshop on Historical Document Imaging and 

Processing, 2011. 
[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning 

applied to document recognition," Proceedings of the IEEE, vol. 86, no. 

11, pp. 2278-2324, 1998. 
[21] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. 

Schmidhuber, "A novel connectionist system for unconstrained 

handwriting recognition," IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 31, no. 5, pp. 855-868, 2009. 

[22] N. Otsu, "A thresholding selection method from gray-level histograms," 

IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 

62-66, 1979. 

[23] K. Simonyan and A. Zisserman, "Very deep convolutional networks for 

large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014. 
[24] A. Graves and J. Schmidhuber, "Framewise phoneme classification with 

bidirectional LSTM networks," Proceedings of the 2005 IEEE 

International Joint Conference on Neural Networks, 2005. 
[25] F. Shafait, D. Keysers, and T. M. Breuel, "Efficient implementation of 

local adaptive thresholding techniques using integral images," 

Document Recognition and Retrieval XV, vol. 6815, p. 681510, 2008. 
[26] K. Nakayama, H. Takano, and T. Yamakawa, "OCR system for the 

visually impaired reading aloud signs and nameplates," 1993 Second 

Asian Conference on Computer Vision, 1993. 
[27] S. Vajda, "Layout Analysis of Hierarchical Text Graphs," 2013 12th 

International Conference on Document Analysis and Recognition, 2013. 

[28] A. Ul-Hasan, F. Shafait, and T. M. Breuel, "Segmentation-free OCR for 
printed Urdu script using bidirectional LSTM networks," 2013 12th 

International Conference on Document Analysis and Recognition, 2013. 

[29] M. Rusinol, D. Aldavert, R. Toledo, and J. Llados, "Browsing 
heterogeneous document collections by a segmentation-free word 

spotting method," IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 34, no. 4, pp. 834-846, 2012. 
[30] P. Doetsch, A. Maier, and H. Ney, "Fast and Robust Training of Recurrent 

Neural Networks for Offline Handwriting Recognition," 2014 22nd 

International Conference on Pattern Recognition, 2014. 
[31] M. Abolhasani, H. R. Rabiee, and M. Farajtabar, "Reinforcement Learning 

Adaptation from several environments," IEEE Transactions on Neural 

Networks and Learning Systems, vol. 32, no. 2, pp. 559-569, 2021. 
[32] J. Ho and S. Ermon, "Generative Adversarial Imitation Learning," 

Advances in Neural Information Processing Systems, vol. 29, pp. 4565-

4573, 2016. 
[33] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, 

"Deep Reinforcement Learning that Matters," Proceedings of the 32nd 

AAAI Conference on Artificial Intelligence, 2018. 
[34] O. Vinyals, M. Fortunato, and N. Jaitly, "Pointer Networks," Advances in 

Neural Information Processing Systems, vol. 28, pp. 2692-2700, 2015. 

[35] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den 

Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. 

Lanctot, "Mastering the game of Go with deep neural networks and tree 
search," Nature, vol. 529, no. 7587, pp. 484-489, 2016. 

[36] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, "Learning 

hand-eye coordination for robotic grasping with deep learning and large-
scale data collection," International Journal of Robotics Research, vol. 

37, no. 4-5, pp. 421-436, 2018. 

[37] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. 
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., "A general 

reinforcement learning algorithm that masters chess, shogi, and Go 

through self-play," Science, vol. 362, no. 6419, pp. 1140-1144, 2018. 
[38] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de 

Freitas, "Dueling network architectures for deep reinforcement 

learning," International Conference on Machine Learning, pp. 1995-
2003, 2016. 

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. 

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et 
al., "Human-level control through deep reinforcement learning," Nature, 

vol. 518, no. 7540, pp. 529-533, 2015. 

[40] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region 
policy optimization," International Conference on Machine Learning, pp. 

1889-1897, 2015. 

[41] K. Simonyan and A. Zisserman, "Very deep convolutional networks for 
large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014. 

[42] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural 

computation, vol. 9, no. 8, pp. 1735-1780, 1997. 
[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. 

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et 

al., "Human-level control through deep reinforcement learning," Nature, 
vol. 518, no. 7540, pp. 529-533, 2015. 

[44] R. J. Williams, "Simple statistical gradient-following algorithms for 

connectionist reinforcement learning," Machine Learning, vol. 8, no. 3-
4, pp. 229-256, 1992. 

http://www.ijctjournal.org/


 International Journal of Computer Techniques -– Volume X Issue X, 2021  

ISSN :2394-2231                                        http://www.ijctjournal.org                           Page 20 

[45] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, "Prioritized experience 

replay," arXiv preprint arXiv:1511.05952, 2015. 

 

 

[46] C. Tensmeyer and T. Martinez, "Document image binarization with fully 
convolutional neural networks," arXiv preprint arXiv:1708.03276, 2017. 

 

[47] M. Smith, "An overview of the Tesseract OCR engine," Ninth 
International Conference on Document Analysis and Recognition 

(ICDAR 2007), vol. 2, pp. 629-633, IEEE, 2007. 

 
[48] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. 

Schmidhuber, "A novel connectionist system for unconstrained 

handwriting recognition," IEEE transactions on pattern analysis and 
machine intelligence, vol. 31, no. 5, pp. 855-868, 2009.

http://www.ijctjournal.org/


 International Journal of Computer Techniques -– Volume X Issue X, 2021  

ISSN :2394-2231                                        http://www.ijctjournal.org                           Page 21 

http://www.ijctjournal.org/


 International Journal of Computer Techniques -– Volume X Issue X, 2021  

ISSN :2394-2231                                        http://www.ijctjournal.org                           Page 22 

XVIII.  

http://www.ijctjournal.org/

