
International Journal of Computer Techniques -– Volume 10 Issue 2, 2023

ISSN: 2455-135X http://www.ijcsejournal.org Page 1

ReactJS: The Latest Front-end Web Development Framework

Aayush Kumar Shaw1, Rishij Manna2, Anirban Bhar3, Soumya Bhattacharyya4

1(B. Tech Student, Department of Information Technology, Narula Institute of Technology, Kolkata, India

Email: as94321038@gmail.com)
2 (B. Tech Student, Department of Information Technology, Narula Institute of Technology, Kolkata, India

Email: rishijmanna2018@gmail.com)
3 (Assistant Professor, Department of Information Technology, Narula Institute of Technology, Kolkata, India

Email: anirban.bhar@nit.ac.in)
4 (Assistant Professor, Department of Information Technology, Narula Institute of Technology, Kolkata, India

Email: soumya.bhattacharyya@nit.ac.in)

I. INTRODUCTION

Internet has become a hive of activity for

searching for information and performing various

duties that were previously performed manually.

Numerous mobile and web applications have

facilitated the completion of a variety of duties. In

the modern era, a significant portion of our daily

tasks can be completed online. quicker internet and

devices necessitate quicker application performance.

 The migration of software and applications from

desktop computers to the web is gaining momentum.

There are numerous web and mobile device-

compatible applications. Various frameworks and

libraries based on JavaScript are used to develop

various applications. Currently in production are

ReactJS, AngularJS, EmberJS, MeteorJS, VueJS,

and KnockoutJS, among others. ReactJS is one of

these front-end application development

frameworks.

 Facebook developed the renowned open-source

front-end JavaScript library React. The popularity

of React among developer communities is largely

attributable to its simplicity and straightforward yet

effective development process. React simplifies the

Abstract:
 To create user interfaces for single-page applications, developers often turn to the open-source

toolkit ReactJS. Developers now have the tools they need to create massive web applications that are data-

driven and dynamic without requiring frequent page reloads thanks to ReactJS. Therefore, React employs

a clever diffing computation to only recover the necessary data in its DOM hub, while keeping everything

else indefinitely. The use of modular components makes it easy to construct our software. The innovative

concept of React also makes UI arrangement trustworthy, relieving a substantial burden from

programmers so that they may concentrate on more substantial limits and business reasoning. Similarly,

there is no required action or sequence of actions in a respond task. Users can pick and choose from a wide

variety of libraries to do any number of tasks.

React.js is a game-changer for front-end development, opening up exciting new possibilities for app

creation. This article discusses the benefits of using ReactJS for the front end of these applications and

how it is aiding in their development. The primary principles, characteristics, features, development

procedures, architecture, and a few dependencies that make up this library, as well as their advantages over

competing frameworks, will be the emphasis of this article.

Keywords — User interface, Open-source toolkit, ReactJS, Front-end development.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcsejournal.org/

International Journal of Computer Techniques -– Volume 10 Issue 2, 2023

ISSN: 2455-135X http://www.ijcsejournal.org Page 2

creation of interactive user interfaces. It changes the

application's data efficiently by rendering the

precise components to the view of each state and

updating the application's view.

 In ReactJS, each component is responsible for

managing its own state and composing user

interfaces. This concept of components as opposed

to templates in JavaScript allows a great deal of

data to be readily passed to the application while

keeping the state outside of the DOM. React can

also be rendered on the server using Node.js. React

Native can be used to create mobile applications in

addition to web applications.

 The purpose of the thesis is to conduct in-depth

research on the JavaScript-based ReactJS library.

The thesis will cover the fundamental concepts,

characteristics, features, development processes,

essential architecture, market research, and

compatibility. The objective is to impart a

comprehensive comprehension of the ReactJS

library.

II. FEATURE

Eight years ago, React was shown to the public

for the first time, and in that time, it has

experienced remarkable expansion both inside and

outside of Facebook. At Facebook, the

development of brand-new online projects often

takes place with some flavour of the framework

known as React, which is also experiencing

widespread adoption in the wider industry.

Developers and engineers are opting for React as

their preferred framework since it enables them to

spend more time concentrating on the creation of

the product and less time struggling with and

learning how to use the framework.

 An application written in React is made up of a

collection of separate components, each of which

represents a single view. Iterating on product

development is made more simpler by the concept

of every individual view component. This is

because it is not necessary to take into

consideration the complete system in order to make

modifications to a single view or component.

Because React surrounds the mutative, imperative

API of the DOM with a declarative API, the level

of abstraction is increased while the programming

paradigm is simplified. This makes the code for an

application that was built with React generally

predictable. In addition to this, the application that

is designed with React is simpler to grow.

The use of React in conjunction with the rapid

iteration cycle of the web has resulted in the

creation of several outstanding products, including

a large number of components for Facebook. On

top of React, the fantastic JavaScript framework

known as Relay has also been developed, and it

helps to make the process of retrieving data on a

wide scale more straightforward.

III. RELATED WORK

ReactJS is a widely utilised open-source

JavaScript toolkit that serves as a fundamental

framework for the creation of single-page or mobile

applications. However, React primarily focuses on

presenting data to the Document Object Model

(DOM), which means that developing React apps

often requires the use of additional frameworks for

managing state and handling routing. Flux [1], as a

form of engineering, is employed by Facebook in

conjunction with React. React is primarily focused

on the View layer inside the Model-View-

Controller (MVC) design pattern, hence limiting its

scope to the V component. [2] Flux is the

architectural pattern responsible for facilitating the

creation of data layers in JavaScript applications

and constructing client-side web applications. Flux

supplements the reactivity of composable view

components by facilitating the flow of information

through its unidirectional data stream. React

provides developers with a layout language and a

set of function hooks that facilitate the creation of

HTML elements [3]. It might be argued that Flux

can be characterised more as a pattern rather than a

framework, consisting of four primary components:

Dispatcher, Stores, Views (React components), and

Actions. The concept of flux adheres to the notion

of a one-way flow of information, hence facilitating

a more streamlined approach to pinpointing errors.

The data undergoes a significant bottleneck within

your application's process. React and Flux are

widely recognised frameworks that adhere to the

concept of unidirectional data flow.

http://www.ijcsejournal.org/

International Journal of Computer Techniques -– Volume 10 Issue 2, 2023

ISSN: 2455-135X http://www.ijcsejournal.org Page 3

Lifecycle methods [4] are a set of predefined

methods in object-oriented programming that are

invoked automatically at various stages of an

object's lifecycle. These methods serve specific

purposes and allow developers to perform

necessary actions during different phases of every

component in React goes through a series of

lifecycle events. In a similar vein, React Lifecycle

systems encompass a series of operations that occur

within the lifespan of a React component, spanning

from its initialization to its termination. Every

element in the React framework undergoes a series

of operations throughout its lifecycle, including

mounting, updating, and unmounting. The render()

method facilitates the allocation of fragments to the

user interface (UI) throughout the process of

resurrecting and mounting a component. If there is

no information to be communicated in the section,

the render() function will restore an incorrect state.

The componentDidMount() function is a lifecycle

method that is invoked when a component is

mounted and rendered. In the event that data is

required from a remote endpoint, the

componentDidMount() method is employed to

initiate API calls. The componentDidUpdate()

lifecycle method is employed when there is a need

to revive the Document Object Model (DOM) in

response to changes in properties or state. In order

to properly dispose of any activities and prevent

harm to the component, it is necessary to invoke the

componentWillUnmount() method before the

component is unmounted. Altering the condition of

the component is deemed inconceivable within the

framework of this technique. The tasks involved in

this technique encompass the disposal of timers,

storage management, and the cessation of API calls.

The utilisation of the shouldComponentUpdate()

lifecycle method is advantageous in situations

where it is preferred to abstain from utilising React

to express prop or state updates. In this particular

methodology, the constituent element of the course

is once again delivered. This particular approach is

employed infrequently and distinctively for certain

performance enhancements. The

getSnapshotBeforeUpdate() is a recently introduced

lifecycle method that can be utilised as an

alternative to the componentWillUpdate()

method.This process is commonly referred to as

pre-instantiating the Document Object Model

(DOM). The value returned by the

getSnapshotBeforeUpdate() method is used as a

parameter in the componentDidUpdate() method.

This system is hardly utilised or remains largely

unused.

IV. STATE MANAGEMENT

When developing more complicated applications,

state management in React becomes increasingly

important. In React, you can choose from a number

of alternative approaches to managing state that are

optimised for various scenarios. Here is a rundown

of some of the most popular:

A. Local State

Using the useState hook, local state refers to the

process of handling data locally, within a single

component. This works well for moderately large

programmes when state doesn't need to be shared

among a lot of moving parts. For components

without numerous dependent children, its simplicity

and low weight make it a viable option.

Example:
import React, { useState } from 'react';
function Counter() {
 const [count, setCount] = useState(0);

 return (
 <div>
 <p>You clicked {count} times</p>
 <button onClick={() => setCount(count + 1)}>
 Click me
 </button>
 </div>
);
}

B. Context API

Using the Context API, you can avoid passing

props through the entire component tree in order to

communicate state between different components.

It's an excellent choice for medium-sized projects

when several components need access to a specific

state without resorting to prop drilling.

Example:
import React, { createContext, useContext, useState }

from 'react';

const MyContext = createContext();

http://www.ijcsejournal.org/

International Journal of Computer Techniques -– Volume 10 Issue 2, 2023

ISSN: 2455-135X http://www.ijcsejournal.org Page 4

function MyProvider({ children }) {
 const [state, setState] = useState(initialState);

 return (
 <MyContext.Provider value={{ state, setState }}>
 {children}
 </MyContext.Provider>
);
}

function MyComponent() {
 const { state, setState } = useContext(MyContext);

 return <div>{state.value}</div>;
}

C. Redux

Redux is a container for JavaScript applications

that provides a predictable state. It is suited for use

in large applications that require intricate control of

their states. Your application's state will be

centralised by Redux, which will make it much

simpler to maintain and troubleshoot.

Example:
// actions.js
const increment = () => ({ type: 'INCREMENT' });

// reducer.js
const initialState = { count: 0 };
const reducer = (state = initialState, action) => {
 switch (action.type) {
 case 'INCREMENT':
 return { ...state, count: state.count + 1 };
 default:
 return state;
 }
};

// store.js
import { createStore } from 'redux';
const store = createStore(reducer);

// component.js
import React from 'react';
import { connect } from 'react-redux';
import { increment } from './actions';

function MyComponent(props) {
 return (
 <div>
 <p>You clicked {props.count} times</p>
 <button onClick={props.increment}>Click

me</button>
 </div>
);
}

const mapStateToProps = (state) => ({
 count: state.count
});

export default connect(mapStateToProps,

{ increment })(MyComponent);

D. MobX

MobX is a library for managing states that,

through the transparent application of functional

reactive programming (TFRP), makes managing

states both straightforward and scalable. In

comparison to Redux, it offers a more

straightforward method of maintaining application

state and may be used for applications of varying

sizes.

Example:
import { observable, action, makeObservable } from

'mobx';

class CounterStore {
 count = 0;

 constructor() {
 makeObservable(this, {
 count: observable,
 increment: action
 });
 }

 increment() {
 this.count++;
 }
}

const counterStore = new CounterStore();

// Component
import React from 'react';
import { observer } from 'mobx-react';

const MyComponent = observer(() => {
 return (
 <div>
 <p>You clicked {counterStore.count} times</p>
 <button onClick={() =>

counterStore.increment()}>Click me</button>
 </div>
);
});

Each of these approaches to state management

comes with a unique set of benefits and drawbacks;

selecting one is typically determined by the

http://www.ijcsejournal.org/

International Journal of Computer Techniques -– Volume 10 Issue 2, 2023

ISSN: 2455-135X http://www.ijcsejournal.org Page 5

particular specifications of the application you are

working on. Local state is fantastic for simplicity,

Context API is beneficial for avoiding unnecessary

prop drilling, Redux is excellent for managing huge

state in a predictable fashion, and MobX gives an

approach to state management that is more

straightforward and intuitive. In the end, the

decision is going to be determined by the size,

complexity, and particular requirements of your

React application.

V. PERFORMANCE OPTIMIZATION

Virtual DOM is a programming concept in React

that maintains an ideal or "virtual" representation of

the user interface in memory. This synthetic

representation corresponds to the DOM (Document

Object Model) that is rendered on the web page.

The virtual DOM serves as an intermediary

between the state/data changes in a React

component and the actual rendering of the user

interface in the browser.

Here's how it operates and why it's important for

optimising React applications:

When the state or data of a React component

changes, the entire component tree is re-rendered in

the virtual DOM, not the actual DOM. React then

compares the newly created virtual DOM to a

snapshot of the virtual DOM prior to the update.

This procedure is known as "diffing."

Since manipulating the actual DOM is

performance-intensive and time-consuming, the

virtual DOM provides a means to reduce direct

interaction with the DOM. By utilising a virtual

representation, React can combine updates and

reduce the number of DOM manipulations,

resulting in significant performance enhancements.

 React groups multiple updates and applies them

all at once, reducing the number of times the actual

DOM is consulted and modified. This approach to

updating the DOM in batches is more efficient than

making individual modifications to the DOM

whenever the state changes.

The reconciliation algorithm utilised by React is

intelligent. When the state changes, the entire actual

DOM is not updated. Instead, it calculates the

difference between the old and new virtual DOMs.

On the actual DOM, only the differences (updates)

are then applied. This process, known as

reconciliation, ensures that the minimum number of

DOM manipulations are performed, resulting to

optimised performance.

Virtual DOM also enables the effective reuse of

components. When the state of a component

changes, React only needs to update the portion of

the virtual DOM that corresponds to that

component, rather than the entire DOM. This

reusability is central to the effectiveness of React.

React facilitates a more seamless user experience

by optimising DOM updates. Updates are

efficiently computed and implemented, resulting in

faster rendering times and a more responsive

application experience.

In conclusion, React's Virtual DOM is an

essential optimisation technique. By minimising

direct interaction with the actual DOM, React

applications become more efficient, responsive, and

seamless for the user. This approach to rendering

updates is a significant reason why React has

become so popular among developers for creating

high-performance web applications.

Improving the efficacy of a React application is

essential for providing a positive user experience.

You have mentioned a number of outstanding

techniques, including code splitting, memoization,

and lazy loading. Here is a more thorough

explanation of these and additional techniques:

A. Code Splitting:

Code splitting is the process of dividing a

JavaScript bundle into smaller pieces that can be

launched on demand. This is particularly beneficial

for large applications, where loading everything at

once could be time-consuming.

React has a built-in method for separating code

using dynamic imports. Libraries such as React

Loadable and React.lazy() can also aid in code

separation implementation.

B. Memoization:

Memoization is an optimization technique used to

store the results of expensive function calls and

return the cached result when the same inputs occur

again.

React provides a useMemo hook which can be

used to memoize values and prevent unnecessary

http://www.ijcsejournal.org/

International Journal of Computer Techniques -– Volume 10 Issue 2, 2023

ISSN: 2455-135X http://www.ijcsejournal.org Page 6

re-computations. Similarly, the useCallback hook

can be used to memoize functions.

C. Lazy Loading:

Lazy loading entails loading only the necessary

components and assets when they are required, as

opposed to loading everything in advance.

React provides the delayed component loading

React.lazy() function. Additionally, React Suspense

can be used to manage loading conditions while

components are lazily loaded.

VI. CONCLUSION

The purpose of the thesis was to investigate and

evaluate ReactJS, an open-source, JavaScript-based

front-end library. Facebook created ReactJS for

their own use and later released it as open source.

Since its inception, ReactJS has rapidly acquired

immense popularity among developers and the tech

industry.

In conclusion, this document provides clear

instructions on how to get started with React,

React's features and functionalities with examples,

when to choose React over other alternatives, and

what data architecture management system to

consider along with its future prospects.

Since React is a difficult and essential technology

to master, it would be advantageous to acquire more

knowledge about it through additional research.

With this in mind, the topic was selected. The

development of a React application would be

beneficial in terms of enhancing practical skills, but

due to certain limitations, a comprehensive review

and evaluation was produced. During the last few

months of studying React, a firm concept has

already been developed.

Finally, it can be stated that ReactJS is a

significant technology to learn and should be

considered for production use. It has added a new

dimension to the development of web applications.

The fast rendering library increases the application's

efficacy, and it is evident that React has a

promising future, so it is worthwhile to learn React.

REFERENCES

[1] Naimul Islam Naim, “ReactJS: An Open

Source JavaScript Library for Front-end

Development,”.

[2] Archana Bhalla, Shivangi Garg, Priyangi Singh,

“Present day web-development using reactjs,”

Volume: 07 Issue: 05, May 2020.

[3] Dave Carlsson, David Ko, “System and

methods for JavaScript based HTML website

layouts,” US 8,959.427 B1.

[4] Minati Biswal, “React lifecycle methods,”

Researchgate Article, December 2019.

http://www.ijcsejournal.org/

