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Abstract: 
 

            Dynamic malware attack through Application Programming Interface calls involves using malicious 

code to interact with an application's APIs in real-time. The goal is to exploit vulnerabilities in the 

application or its underlying infrastructure, allowing the attacker to gain access to sensitive data or take 

control of the system. This type of attack is often used to steal credentials, execute unauthorized 

commands, or install additional malware.  Due to the problem of dynamic malware attacks through API 

calls, this paper presents a technique for the detection and classification of dynamic malware attacks 

through API calls. The paper adopted Object Oriented Analysis and Design (OOAD) as the design 

methodology and used python programming language for the implementation of the system. For the 

detection and prevention of the dynamic malware attacks, the system trained a Recurrent Neural Network 

(RNN) algorithm on a dataset comprises different signatures and behavioral patterns of dynamic malware 

attacks through API calls. The proposed RNN model was able to learn and understand the dataset 

accurately. The training results shows that the RNN model gave about 98.84% accuracy during training. 

The RNN model was tested on the test data and the performance of the model gave an accuracy of 99%. 

The RNN model was deployed for production. A web-based system was developed and integrate the 

recurrent neural network model into it for easy identification and prevention of dynamic malware attacks 

from gaining access to the system via API calls. 

 

Keywords — Dynamic malware, Recurrent Neural Network, Application Programming Interface 

(API), Security Threats. 
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I.     INTRODUCTION 

Dynamic malware attacks pose a significant 

threat to the security and integrity of computer 

systems and networks. In recent years, 

cybercriminals have become increasingly 

sophisticated in their methods, employing advanced 

techniques to evade traditional security measures. 

One such technique involves leveraging 

Application Programming Interface (API) calls to 

execute malicious activities and exploit 

vulnerabilities within a system. 

APIs serve as the interface between different 

software components, enabling them to 

communicate and interact with one another. They 

provide a convenient and standardized way for 

developers to access and utilize the functionalities 
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of various software libraries and services. However, 

malicious actors can also exploit the openness and 

flexibility of APIs to carry out attacks. 

The study of dynamic malware attacks through 

API calls aims to understand the techniques and 

strategies employed by attackers to exploit APIs for 

malicious purposes. By analyzing the 

characteristics of API-based attacks, researchers 

and security practitioners can develop effective 

countermeasures to detect, prevent, and mitigate 

such threats. 

This research field encompasses various aspects, 

including identifying and analyzing malicious API 

calls, detecting anomalous API behaviors, 

developing machine learning and data mining 

techniques to identify patterns indicative of API-

based attacks, and designing robust security 

mechanisms to protect against such threats. The 

ultimate goal is to enhance the security posture of 

computer systems and networks by improving our 

understanding of API-based attack vectors. 

This paper comprehensively reviews the existing 

literature on dynamic malware attacks through API 

calls. We discuss the different types of API-based 

attacks, the underlying mechanisms employed by 

attackers, and the state-of-the-art approaches 

proposed to detect and defend against such attacks. 

By examining the current research trends and 

identifying research gaps, we aim to provide 

insights for future studies and developments in this 

important field of cybersecurity. 

II.     LITERATURE REVIEW. 

With the goal of creating extremely accurate 

malware detection based on many kinds of dynamic 

behaviour characteristics, (Pengbin et al., 2018) 

offer an efficient dynamic analysis framework 

named EnDroid. Theft of private information, 

fraudulent membership to premium services, and 

malicious service communication are just some of 

the system-level threats that may be tracked using 

these capabilities. EnDroid also uses a feature 

selection algorithm to filter out extraneous data and 

isolate key behavioural characteristics. By using a 

runtime monitor to extract behaviour data, EnDroid 

is able to use an ensemble learning algorithm to 

determine whether or not an app is harmful. They 

demonstrate the efficiency of EnDroid on two 

datasets via experimental results. In addition, their 

model has the highest classification performance 

and shows promise in detecting Android malware. 

Word embedding was first proposed by (Eslam 

and Ivan, 2020) as a method for deducing the 

contextual link between API functions in malware 

call sequences. In addition, they provide a strategy 

for grouping functions with comparable contextual 

characteristics. The experimental findings 

demonstrate a clear separation between malicious 

and benign sequences of calls. On the basis of this 

differentiation, they provide a novel Markov chain-

based technique for detecting and predicting 

malware. They create a semantic transition matrix 

that represents the true relationship between API 

functions by simulating the behaviour of malware 

and goodware API call sequences. The average 

detection accuracy of their suggested models is 

0.990, with a false positive rate of 0.010. They also 

offer a method that may prevent malicious payloads 

from executing, rather than discovering them post-

execution and then fixing the harm. 

An technique based on dynamic analysis with 

process mining is proposed (Mario et al., 2019) for 

detecting malware and exploring its phylogeny. The 

method makes use of process mining methods to 

define a mobile app's activity by identifying 

relationships and recurrent execution patterns in the 

system call traces collected from the app. The run-

time fingerprint of the programme is described as a 

collection of declarative restrictions between 

system calls, which is what we retrieve as a 

characterisation. To determine (1) if a programme 

is malicious or trustworthy, (2) which family of 

malware it belongs to, and (3) how it varies from 

other known variations within the same malware 

family, the so-defined fingerprint of the application 

in question is compared with those of known 

malware. It has been proved via empirical research 

on a dataset of 1200 trustworthy and malicious 

programmes across 10 malware families that the 

method has a high degree of discriminating that 

may be used for the purposes of malware detection 

and the study of malware evolution. 

In this paper, Taylor et al. (2020) described a 

model for identifying phishing websites that makes 

use of a deep neural network method and a support 

vector classifier. The dataset we used contained a 
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total of 98,019 website urls, including 48,009 

genuine urls and 48,009 phishing urls. To prepare 

the dataset for training, we removed all Nan and 

finite values during preprocessing. Using feature 

extraction, we removed the dataset's dimension and 

several unwanted feature columns, reducing the 

dataset from 16 to 2 columns: the domain feature 

column (which contains the domain names/website 

URLs) and the label feature column (this holds the 

binary values 0 and 1, where 0 represent a 

legitimate website Url and 1 represent a phishing 

website). To create a vector of term/token counts, 

we used CountVectorizer on text documents in the 

domain column. CountVectorizer additionally 

allows for text input to be pre-processed before the 

vector representation is generated. Their proposed 

deep learning method achieved an accuracy of 

98.33% on the same 98,018 url dataset as the 

support vector classifier (after training). 

Using a Random Forest Classifier and Principal 

Component Analysis, Taylor and Ezekiel (2022) 

describe a sophisticated system for identifying 

behavioral bootnet attacks (PCA). The foundation 

of the system is a botnet dataset used to develop a 

reliable model for identifying Bootnet assaults. The 

pandas, package was used to clean the data in the 

dataset before processing. To prevent data 

inconsistency, PCA was employed to reduce the 

dataset's dimensionality. The PCA output was fed 

into a random forest classifier to help make 

predictions. Training the random forest classifier 

using 1000 estimators. The results of the model are 

encouraging, indicating an accuracy of almost 99 

percent. 

Jeremiah and Mattias (2022) proposed a hybrid 

model that combines logistic regression (LR) and 

decision tree (DT) with some tunable parameters 

for the design and training of classifiers in data 

mining techniques for real-world problems in 

Python (Spyder IDE) with Sklearn as the 

underlying data source library. Using logistic 

regression and Decision Tree models, we were able 

to verify that the system performed as expected of it. 

The end outcome was an increase in accuracy from 

the baseline of 81.42 percent to between 86.33 and 

87.62 percent. 

A innovative hybrid strategy combining Dynamic 

Malware Analysis, Cyber Threat Intelligence, 

Machine Learning (ML), and Data Forensics was 

developed by Nigat et al. (2021). IP reputation is 

forecasted in the pre-acceptance stage using the 

idea of big data forensics, and related zero-day 

assaults are classified using behavioural analysis 

utilising the Decision Tree (DT) approach. The 

suggested method concurrently evaluates the 

severity, risk score, confidence, and longevity of 

large data forensic concerns while drawing 

attention to them. Both the ML approaches used to 

get the best F-measure, accuracy, and recall scores 

are compared, and the complete reputation system 

is compared to current reputation systems to see 

how well it performs. Our suggested architecture is 

not only able to cross-reference with external 

sources, but it can also mitigate security concerns 

that were previously ignored by legacy reputation 

search engines. 

Android users may now benefit from the 

MalDozer software created by (Karbab et al., 2018). 

This Android app relies on deep learning-based 

series categorization. MalDozer starts with the bare 

bones of an app's API strategy calls and learns to 

identify Android malware by separating malicious 

and benign cases. MalDozer is a malware detection 

application for Android devices that may be used 

on smartphones, tablets, and even Internet of 

Things devices. They use a wide variety of Android 

malware datasets, ranging from 1K to 33K 

malicious apps, and 38K benign apps, to evaluate 

the MalDozer app. With an F1-Score of 96% e99% 

and a false positive rate of 0.06 % e2% on a 

comprehensive testing dataset, their results 

demonstrate that MalDozer can accurately detect 

malware and assign it to its authentic families. 

A new approach for identifying and categorising 

Android malware has been proposed (McLaughlin 

et al., 2017). A Deep Convolutional Neural 

Network technique was used in the suggested 

framework (CNN). Malware detection and 

classification relies on a static analysis of the raw 

opcode sequence recovered from an executable's 

disassembly. The network intuitively picks up on 

elements indicative of malware from the primitive 

opcode sequence, doing away with the need for 

specially created malware features. Long n-gram-

like characteristics, which aren't computationally 

feasible with current methods, may also be used 
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because of the network setup. Once the network is 

ready, it can be efficiently executed on a GPU, 

allowing a very large number of files to be scanned 

in a short amount of time. 

De-LADY (DLearning-based Android malware 

detection utilising Dynamic characteristics) is an 

obfuscation-resistant method proposed by Shihang 

et al. (2021). Dynamic analysis of a programme 

running in an emulation environment provides the 

basis for this. There are a total of 13533 

applications across various industries (such as 

finance, entertainment, and utilities) that are used to 

test the suggested method. With a 98.08 percent 

detection rate and an F-measure of 98.84 percent, 

De-LADY is very successful. 

To detect malicious software on Android devices, 

a new method has been proposed (Kim et al., 2017). 

Features are enhanced using a fact based or 

comparability based component extraction 

approach for effective feature portrayal on malware 

detection. Their system uses a variety of features to 

reflect the attributes of Android apps from a variety 

of perspectives. A multimodal Deep Learning 

technique for identifying malware applications/files 

was also presented. They ran a battery of trials with 

a total of 41,260 cases to see how well their model 

worked. When compared to other Deep Neural 

Network models, they discussed the superior 

accuracy of their own. In addition, they assessed 

their framework in a number of ways, such as 

model update efficiency, component usefulness, 

and representation approach. They also compared 

their framework's performance to that of other 

methods, such as a deep learning-based approach. 

Traditional Machine-Learning Techniques and 

Deep learning approaches are compared and 

contrasted using public and private datasets for 

malware identification, classification, and grouping 

(Vinayakumar et al., 2019). Their exploratory 

research makes use of public and private datasets, 

both of which include train and test portions that are 

separate from one another and were collected at 

different periods. They also suggest a new way of 

dealing with images that has good limits for use in 

Machine Learning and Deep Learning. Extensive 

testing and evaluation of these methods show that 

they perform better than conventional Machine-

learning Algorithms. Overall, their study provides a 

flexible and composite Deep-Learning system for 

real-time execution, allowing for the effective 

visual finding of malware. 

(Souri and Hosseini, 2018) provides a 

comprehensive analysis of the malware 

identification technologies that make use of Data 

Mining techniques. Additionally, it divides malware 

recognition methods into two primary categories: 

signature-based and behavioral-based approaches. 

Specifically, they will be focusing on the following 

areas: (1) providing a rundown of the latest 

developments related to malware detection methods 

in Data mining; (2) presenting a precise and 

organised outline of the latest approaches to dealing 

with Machine-Learning components; (3) delving 

into the design of the massive techniques used in 

the malware detection method; and (4) analysing 

the important elements of classifying malware 

methods in Data mining. This research helps 

researchers get a holistic understanding of evaded 

malware identification and enables specialists to 

make informed evaluations moving forward. 

To deal with the exponential growth of Android 

malware, SIGPID is introduced (Li et al., 2018), a 

malware identification framework based on 

authorisation usage breakdown. By mining the 

consent information, they were able to identify the 

three key authorizations that may be convincing for 

distinguishing between benign and harmful 

programmes. In order to distinguish between 

malicious and safe programmes, SIGPID employs 

Machine Learning based categorization approaches. 

Based on their findings, just 22 permissions are 

really necessary. They contrasted the efficacy of 

their technique, which required just 22 permissions, 

to that of a standard procedure that considered 

every possible authorisation. When using Support 

Vector Machine (SVM) as the classifier, they are 

able to achieve results that are comparable to the 

baseline method in terms of accuracy, recall, 

precision, and F-measure (more than 90%). They 

evaluated it in relation to other cutting-edge 

strategies. Their improved SIGPID is able to 

differentiate 93.62 percent of malware in the 

training set and 91.4 percent of tests on 

unknown/new malware. 

According to (Yanfang, 2017) conducted a high-

level data mining scan for malware detection. They 
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begin with a brief introduction to malware and the 

anti-malware sector before moving on to the 

technical specifications for malware identification. 

In addition, they reviewed existing methods for 

detecting sophisticated malware. The recognition 

process is broken down into two stages in these 

methods: component extraction and clustering. 

Smart malware detection techniques are often 

shown using extracted components and clustering 

techniques. They look into the component 

extraction and clustering techniques in depth. 

Finally, they make predictions about future trends 

in malware development after examining the 

additional problems and difficulties of malware 

recognition using Data mining techniques. 

Taylor et al. (2021) provides a Deep Learning-

based strategy for finding malware. A malware 

dataset, including both malicious and clean files, is 

used by our system. This dataset has 72 columns. 

Input data totalled 18929, and the Deep Forward 

Neural Network Algorithm was run with a 32-batch 

size and a 50-epoch epoch to train the Deep 

Learning Model's Dense layer, two input layers, and 

one output layer. Their system's accuracy improved 

to around 99.94% after training. For real-time 

detection and classification of dangerous 

applications and benign applications, the model was 

stored and delivered to web using the python 

framework. They also compared our trained model 

to other existing systems and found that our 

proposed model is more accurate. 

 

III. DESIGN METHODOLOGY 

 
Figure 1: Architecture of the Proposed System. 

 

A. Dataset: There are 1,079 API call sequences 

from legitimate software and 42,797 from 

malware in the dataset. The 'calls' portions of 

Cuckoo Sandbox reports are parsed to construct 

API call sequences, with each sequence 

consisting of the first one hundred consecutive 

API calls connected with the parent process. 

Goodware was gathered from portablepps.com 

and a 32-bit Windows 7 Ultimate directory, 

while malware was gathered via VirusShare. The 

dataset was made more diverse by include 

software available for download online as well 

as locally developed software. Cuckoo Sandbox, 

a popular open-source automated malware 

analysis system that can observe processes' 

activity while operating in isolation, was used to 

collect the API call sequences from each sample. 

Figure 3.3 displays a subset of the dataset. 

 
 

Figure 2: Dataset Sample 

B. Data Pre-processing: This concerns vetting nan 

values and cleaning up the dataset from noise. 

The preprocessing may be seen below in its 

mathematical representation. 

To calculate the width of the output data (d), we 

need to know the filter size (f), the padding size (P), 

and the stride (s). Below is the mathematical 

expression that will be used to refine the data using 

the gaussian function. 

 
Where G is the Gaussian function with x and y as 

the input data, σ is the learning rate, and e is the 

edge of the object 

C. Feature Extraction 

This is related to the features or columns chosen 

for usage in the deep learning model's training 

process. Here, we extracted two useful 
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features/columns from the original dataset to use as 

the basis for a new dataset. Name and Malware are 

the columns in question. The Malware column has 

values of 0 and 1, where 0 represents benign files 

and 1 represents malware files, while the Name 

column comprises 19612 apps and files that are 

both malicious and safe (Unsafe). A hypervisor is a 

piece of software that acts as an intermediary 

between the host computer and the virtual machines 

it hosts. Thus, data can be gathered from the 

underlying hardware, the hypervisor, and the virtual 

machine. To extract and gather these characteristics, 

we use Xentrace, a hypervisor-based tracking tool, 

and perf, a Linux-based performance collecting tool. 

Figure 3 depicts the extracted characteristics of the 

dataset. 

 
Figure 3: Extracted Features 

 

D. Recurrent Neural Network: The LSM technique 

was used to teach the model. Malware data will 

be used to train the LSTM model. The Long 

Short-Term Memory (LSTM) algorithm is a kind 

of RNN. TensorFlow Framework and the Keras 

library will be used to create the LSTM model. 

Because of the sequential nature of the Keras 

API, we construct the network in layers. Here 

are the different levels: 

A 100-dimensional embedding in which each 

input word is converted into a vector. We 

provide pre-trained weights as a parameter to the 

embedding (more on this in a moment). If the 

embeddings are stable, we may leave trainable 

set to False. 

Any words for which an embedding has not been 

previously taught will be hidden using a 

Masking layer. Training embeddings should 

proceed without this layer. 

A layer of LSTM cells with dropout to avoid 

overfitting serves as the network's central 

processing unit. The sequences are not returned 

since we are only using a single LSTM layer; if 

you are using two or more layers, this should be 

corrected. 

A Dense layer that is completely linked and is 

activated via relu. As a result, the network's 

capacity for representation grows. 

Overfitting the training data is avoided via a 

Dropout layer. 

Dense layer of output connections. The result of 

this process, which employs softmax activation, 

is a probability for each word in the vocabulary. 

 

E. Output: The output shows the output of the 

system after various inputs has been entered. The 

output of the system can be either malicious file 

and Benign Files. 

IV. COMPONENT DESIGN 

The component design is the breakdown of the 

component in the proposed system architecture. 

This is always needful because it shows further 

other sub-components that were not made known in 

the design of the system architecture. Figure 4 

shows the sub-component of the LSTM architecture. 

 

1 Algorithm for LSTM 

Here is a general outline of the LSTM algorithm: 

1. Initialize the weights and biases of the 

LSTM network. 

2. For each time step 't' in the input sequence: 

a. Get the current input 'x_t' and previous hidden 

state 'h_{t-1}'. b. Calculate the forget gate 'f_t', 

input gate 'i_t', and output gate 'o_t' using the 

following equations:  

i. forget gate 'f_t': f_t = σ(W_f . [h_{t-1}, x_t] 

+ b_f)  

ii. input gate 'i_t': i_t = σ(W_i . [h_{t-1}, x_t] 

+ b_i)  

iii. output gate 'o_t': o_t = σ(W_o . [h_{t-1}, 

x_t] + b_o) c. Calculate the candidate memory cell 

'c_~t' using the following equation: c_~t = 
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tanh(W_c . [h_{t-1}, x_t] + b_c) d. Update the 

memory cell 'c_t' using the forget gate and 

candidate memory cell as follows: c_t = f_t * c_{t-1} 

+ i_t * c_~t e. Update the hidden state 'h_t' using 

the memory cell and output gate as follows: h_t = 

o_t * tanh(c_t) 

3. Repeat steps 2 for all the time steps in the 

input sequence. 

4. Output the final hidden state 'h_T', which 

summarizes the information from the entire input 

sequence. 

5. Use the final hidden state as input to a fully 

connected layer to obtain the final prediction. 

Note: In the equations above, 'W_f', 'W_i', 'W_o', 

'W_c' are the weight matrices, 'b_f', 'b_i', 'b_o', 'b_c' 

are the bias vectors, and 'σ' is the sigmoid activation 

function. 

 

 
Figure 4: Component Design 

 

The LSTM model developed for this investigation is shown 

graphically in Figure 3. Output layer, activation functions 

(sigmoid and tanh), input layer, hidden layer, and cell state 

make up the LSTM model. The following provides further 

information on the LSTM architecture: 

Forget Gate: calculates the forgotten information f(t) by 

fitting a sigmoid to the concealed state h-(t) and the input x-(t). 

Input Gate: selects which updated cell state,c-(t) data to 

store. To determine which values to update (,i-(t)), a sigmoid 

is applied to the hidden state (h-(t1)) and the input (,x-(t)), and 

a tanh is applied to the hidden state (,h-,t1..) and the input (,x-

(t)) to create a vector of new candidate values (,c-(t)). 

Cell State update: While not a true gate, this operation 

updates the state over time by adding,c-(t1) to the current state. 

combined with the product of the outputs of the input gates (i-

(t), c-(t), and the forget gate (f-(t)). 

• Output Gate: determines the result ct by reapplying the 

sigmoid to the now-revealed state,h-(t1). by taking the 

input,x-(t), multiplying it by the current long-term state, c-(t), 

and taking the result. 

 

 

 

 

 

Algorithm 2 Feature vector generation of AP1 calls 

 

1:    ∆: Dataset of malware and benign behavior analysis 

reports [fi]  

2:    processed_api_arg: List of the generalized API calls 

and arguments 

Given: common_malware_types, 

common_registry_keywords and ∆ 

Results:       (1) Feature vector of Method 1 

[Feature_VectorM1], and 

Method 2 [Feature_VectorM2] 

3: processed_api_arg = {} 

4: foreach fi ∈ ∆ do 

5:  Process the log file and extract its list of API calls 

(APIij) and arguments (ARGijk) 

6: Remove the suffix from the API name 

[’ExW’, ’ExA’, ’W’, ’A’, ’Ex’] 

in APIij ∈ fi 

7:  foreach ARGijk ∈ APIij do 

8:      switch (ARGijk) 

9:      Check if the common malware file types exists in 

          command_line 

10:     case command_l ine: 

11:         Call Algorithm 4 

12:     Check if the regkey value is one of the common 

regkey for malware 

13:      case ’regkey’: 

14:          Call Algorithm 3 

15:       case ’path’ or ’directory’: 

16:           Call Algorithm 5 

17:       Remaining arguments with integer values, convert 

them into bin-based tags 

18:       case IsNumber(ARGijk): 

19:           Call Algorithm 2 

20:        Remaining arguments with concrete values will not 

be changed 

21:        else: 

22:           processed_api_arg[ARGijk] = value(ARGijk) 

23:       end switch 

24:      end foreach 

25:      Features are constructed using Method 1 and 

Method 2 formulas 

26:      M1processed_api_arg = 

Method1(processed_api_arg) 

27:      M2processed_api_arg = 

Method2(processed_api_arg) 

28:    Generate Method 1 and Method 2 feature vectors 

from the processed_api_arg using                     

HashingVectorizer function 

29:     Feature_VectorM1 = 

HashingVectorizer(M1processed_api_arg) 

30:     Feature_VectorM2 = 

HashingVectorizer(M2processed_api_arg) 

31: end foreach 
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32: return Feature_VectorM1, Feature_VectorM2 

 

 

 

V. RESULTS 

The experimental result is made up of two phases. 

The first has to do with the exploratory data 

analysis and the second has to do with the training 

of the model. 

A.  Exploratory Data Analysis 

This section gives a detailed analysis on the 

malware features extracted via API calls. In other to 

get a better training result in terms of model 

accuracy, precision, and recall, data cleaning 

processes was carried out. Figure 5. shows a 

histogram of the total number of files that are 

malicious, and files that are not malicious. 

 

 
Figure 5: A Countplot of the Dataset 

This shows the total number of Benign files and malicious 

files that are present on the dataset. 

 

 
Figure 6: Tokenized and Converted to Data 

 

 

 

B. Model Training  

The model was trained using Recurrent Neural 

Network. The model was trained using the four 

layers. The first layer contains an input neuron 

of 20, and used relu as activation function. The 

second layer contains an input neuro of 10, and 

activation function of tanh. The third layer 

contain an input neuron of 1024, and an 

activation function of relu, and finally the fourth 

layer being the output layer used sigmoid as 

activation function. Other hyper parameters used 

in training the model are loss= 

binary_crossentropy, optimizer=adma, epoch, 20 

and batch_size =15. The training result which 

displays the loss and accuracy acquired at each 

training steps can be seen in Figure 7. The 

graphical representation of the loss and accuracy 

values during training and testing can be seen in 

Figure 8 and 9 respectively. A classification 

report of the model can be seen in Figure 10. 

The classification report contains accuracy, 

precision, recall, and f-score measure. Figure 11 

represents the confusion matrix of the model that 

shows the number of true predictions of the 

model on the categories 1 and 0. Where 0 

represents Benign and 1 represents malicious 

attacks. 
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Figure 7: The Training Process of the Recurrent Neural 

Network Model Which Tests Displays the Training Steps, 

Loss Values and Accuracy for 1-10 Epochs (Training 

Steps). 

 

 
Figure 8:  A Graphical Representation of Training 

Accuracy Vs Training Epochs 

Here the model shows a training accuracy of about 99% 

and a test accuracy of about 98%. 

 

 
Figure 9: A Graphical Representation of Training Loss 

Values Vs Training Epochs 

Here the model had a loss values below 0.1% for both 

training and testing. 

 

 
Figure 10: Classification Report of the Recurrent Neural 

Network Model. 

 
Figure 11:  Confusion Matrix of the proposed Recurrent 

Neural Network 

The confusion matrix shows the predicted result vs the actual 

prediction. 

VI. DISCUSSION OF RESULTS 

From the experiment conducted Figure 5 

described the total number of files that are 

malicious and benign. This shows that over 1400 

files are of malware attack and 1400 are of benign. 

Before passing the data to the deep learning model, 

the has function column needs to pass through 

tokenization process. This is to say that the query 

column needs to be tokenized and converted to 

arrays. Figure 6 shows the tokenized and 

transformed data. In Figure 6, all the features have 

been converted to numerical form. This was done 

so that it can fit in the deep learning model. Figure 

7 shows the training process of the model. Here the 

model was trained on 10 steps. Figure 7 also shows 

the accuracy and loss obtained from each of the step 

completed.  Figure 8 shows the accuracy obtained 

http://www.ijctjournal.org/
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for both training and validation test. The training 

and validation accuracy are used in testing the 

performance of the model during training and also 

on a test dataset. The model achieved a training 

result of about 98% and a test result of about 98%. 

Figure 9 shows the losses of the model for both 

training and testing data. The model has a loss 

value below 0.1 for both training and testing. Figure 

10 shows the classification report of the model. The 

classification report is a summation of accuracy, 

precision, recall and f- measure. Precision has to do 

with the correct classification of the model in terms 

of false positive, false negative, true positive and 

true negative. The precision score of the model are 

about 100% correct classification for queries that 

are benign and 100% correct classification for files 

that are of malware attack. The support column in 

Figure 10 shows the total number of classifications 

that was carried out by the model. Figure 11 shows 

the confusion matrix of the proposed system. 

Confusion matrix depicts the total number of 

correct prediction and the total number of false 

classifications. The confusion matrix shows that out 

of 1021 classification on attacks that are of benign, 

the model predicted correctly for 1021 and 

predicted falsely for 0 times. Then for attacks that 

are of malicious attacks, the model predicted 

correctly 1035 times and predicted falsely for just 0. 

This shows the performance of the model is in good 

shape. 

VII. CONCLUSIONS 

This paper developed a system for the accurate 

detection of dynamic malware via API calls. This 

was achieved by analyzing the behavioural pattern 

of dynamic malware using exploratory data analysis. 

The exploratory data analysis has to do 

visualization of data. The visualization of data helps 

to uncover the patterns of the dynamic malware 

attack via API calls. A recurrent neural network 

model was trained for detecting future attacks of 

dynamic malware via API calls. The model was 

trained using dynamic malware data. The data 

comprise different attacks of dynamic malware that 

were carried out via API calls. The result of the 

system was compared with other existing systems. 

Here the results show that the proposed system 

outperformed the existing system with an accuracy 

result of 99.99%. Future recommendation of this 

research will be directed towards the detection of 

dynamic malware on edge devices. Causal 

Productions is credited in the revised template as 

follows:  “original version of this template was 

provided by courtesy of Causal Productions 

(www.causalproductions.com)”. 
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