
 International Journal of Computer Techniques -– Volume 10 Issue 2, 2023

ISSN :2394-2231 http://www.ijctjournal.org Page 1

A Technique for Dynamic Malware Detection through Application

Programming Interface (API) Calls
D.I. Ekpo*, O.E. Taylor**, D. Matthias***

*(Computer Science, Rivers State University, Nkpolu Port Harcourt

Email: Daniel.ekpo@ust.edu.ng)

** (Computer Science, Rivers State University, Nkpolu Port Harcourt

Email: Taylor.onate@ust.edu.ng)

 *** (Computer Science, Rivers State University, Nkpolu Port Harcourt

Email: matthias.daniel@ust.edu.ng)

--************************----------------------------------

Abstract:

 Dynamic malware attack through Application Programming Interface calls involves using malicious

code to interact with an application's APIs in real-time. The goal is to exploit vulnerabilities in the

application or its underlying infrastructure, allowing the attacker to gain access to sensitive data or take

control of the system. This type of attack is often used to steal credentials, execute unauthorized

commands, or install additional malware. Due to the problem of dynamic malware attacks through API

calls, this paper presents a technique for the detection and classification of dynamic malware attacks

through API calls. The paper adopted Object Oriented Analysis and Design (OOAD) as the design

methodology and used python programming language for the implementation of the system. For the

detection and prevention of the dynamic malware attacks, the system trained a Recurrent Neural Network

(RNN) algorithm on a dataset comprises different signatures and behavioral patterns of dynamic malware

attacks through API calls. The proposed RNN model was able to learn and understand the dataset

accurately. The training results shows that the RNN model gave about 98.84% accuracy during training.

The RNN model was tested on the test data and the performance of the model gave an accuracy of 99%.

The RNN model was deployed for production. A web-based system was developed and integrate the

recurrent neural network model into it for easy identification and prevention of dynamic malware attacks

from gaining access to the system via API calls.

Keywords — Dynamic malware, Recurrent Neural Network, Application Programming Interface

(API), Security Threats.

--************************----------------------------------

I. INTRODUCTION

Dynamic malware attacks pose a significant

threat to the security and integrity of computer

systems and networks. In recent years,

cybercriminals have become increasingly

sophisticated in their methods, employing advanced

techniques to evade traditional security measures.

One such technique involves leveraging

Application Programming Interface (API) calls to

execute malicious activities and exploit

vulnerabilities within a system.

APIs serve as the interface between different

software components, enabling them to

communicate and interact with one another. They

provide a convenient and standardized way for

developers to access and utilize the functionalities

RESEARCH ARTICLE OPEN ACCESS

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 2

of various software libraries and services. However,

malicious actors can also exploit the openness and

flexibility of APIs to carry out attacks.

The study of dynamic malware attacks through

API calls aims to understand the techniques and

strategies employed by attackers to exploit APIs for

malicious purposes. By analyzing the

characteristics of API-based attacks, researchers

and security practitioners can develop effective

countermeasures to detect, prevent, and mitigate

such threats.

This research field encompasses various aspects,

including identifying and analyzing malicious API

calls, detecting anomalous API behaviors,

developing machine learning and data mining

techniques to identify patterns indicative of API-

based attacks, and designing robust security

mechanisms to protect against such threats. The

ultimate goal is to enhance the security posture of

computer systems and networks by improving our

understanding of API-based attack vectors.

This paper comprehensively reviews the existing

literature on dynamic malware attacks through API

calls. We discuss the different types of API-based

attacks, the underlying mechanisms employed by

attackers, and the state-of-the-art approaches

proposed to detect and defend against such attacks.

By examining the current research trends and

identifying research gaps, we aim to provide

insights for future studies and developments in this

important field of cybersecurity.

II. LITERATURE REVIEW.

With the goal of creating extremely accurate

malware detection based on many kinds of dynamic

behaviour characteristics, (Pengbin et al., 2018)

offer an efficient dynamic analysis framework

named EnDroid. Theft of private information,

fraudulent membership to premium services, and

malicious service communication are just some of

the system-level threats that may be tracked using

these capabilities. EnDroid also uses a feature

selection algorithm to filter out extraneous data and

isolate key behavioural characteristics. By using a

runtime monitor to extract behaviour data, EnDroid

is able to use an ensemble learning algorithm to

determine whether or not an app is harmful. They

demonstrate the efficiency of EnDroid on two

datasets via experimental results. In addition, their

model has the highest classification performance

and shows promise in detecting Android malware.

Word embedding was first proposed by (Eslam

and Ivan, 2020) as a method for deducing the

contextual link between API functions in malware

call sequences. In addition, they provide a strategy

for grouping functions with comparable contextual

characteristics. The experimental findings

demonstrate a clear separation between malicious

and benign sequences of calls. On the basis of this

differentiation, they provide a novel Markov chain-

based technique for detecting and predicting

malware. They create a semantic transition matrix

that represents the true relationship between API

functions by simulating the behaviour of malware

and goodware API call sequences. The average

detection accuracy of their suggested models is

0.990, with a false positive rate of 0.010. They also

offer a method that may prevent malicious payloads

from executing, rather than discovering them post-

execution and then fixing the harm.

An technique based on dynamic analysis with

process mining is proposed (Mario et al., 2019) for

detecting malware and exploring its phylogeny. The

method makes use of process mining methods to

define a mobile app's activity by identifying

relationships and recurrent execution patterns in the

system call traces collected from the app. The run-

time fingerprint of the programme is described as a

collection of declarative restrictions between

system calls, which is what we retrieve as a

characterisation. To determine (1) if a programme

is malicious or trustworthy, (2) which family of

malware it belongs to, and (3) how it varies from

other known variations within the same malware

family, the so-defined fingerprint of the application

in question is compared with those of known

malware. It has been proved via empirical research

on a dataset of 1200 trustworthy and malicious

programmes across 10 malware families that the

method has a high degree of discriminating that

may be used for the purposes of malware detection

and the study of malware evolution.

In this paper, Taylor et al. (2020) described a

model for identifying phishing websites that makes

use of a deep neural network method and a support

vector classifier. The dataset we used contained a

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 3

total of 98,019 website urls, including 48,009

genuine urls and 48,009 phishing urls. To prepare

the dataset for training, we removed all Nan and

finite values during preprocessing. Using feature

extraction, we removed the dataset's dimension and

several unwanted feature columns, reducing the

dataset from 16 to 2 columns: the domain feature

column (which contains the domain names/website

URLs) and the label feature column (this holds the

binary values 0 and 1, where 0 represent a

legitimate website Url and 1 represent a phishing

website). To create a vector of term/token counts,

we used CountVectorizer on text documents in the

domain column. CountVectorizer additionally

allows for text input to be pre-processed before the

vector representation is generated. Their proposed

deep learning method achieved an accuracy of

98.33% on the same 98,018 url dataset as the

support vector classifier (after training).

Using a Random Forest Classifier and Principal

Component Analysis, Taylor and Ezekiel (2022)

describe a sophisticated system for identifying

behavioral bootnet attacks (PCA). The foundation

of the system is a botnet dataset used to develop a

reliable model for identifying Bootnet assaults. The

pandas, package was used to clean the data in the

dataset before processing. To prevent data

inconsistency, PCA was employed to reduce the

dataset's dimensionality. The PCA output was fed

into a random forest classifier to help make

predictions. Training the random forest classifier

using 1000 estimators. The results of the model are

encouraging, indicating an accuracy of almost 99

percent.

Jeremiah and Mattias (2022) proposed a hybrid

model that combines logistic regression (LR) and

decision tree (DT) with some tunable parameters

for the design and training of classifiers in data

mining techniques for real-world problems in

Python (Spyder IDE) with Sklearn as the

underlying data source library. Using logistic

regression and Decision Tree models, we were able

to verify that the system performed as expected of it.

The end outcome was an increase in accuracy from

the baseline of 81.42 percent to between 86.33 and

87.62 percent.

A innovative hybrid strategy combining Dynamic

Malware Analysis, Cyber Threat Intelligence,

Machine Learning (ML), and Data Forensics was

developed by Nigat et al. (2021). IP reputation is

forecasted in the pre-acceptance stage using the

idea of big data forensics, and related zero-day

assaults are classified using behavioural analysis

utilising the Decision Tree (DT) approach. The

suggested method concurrently evaluates the

severity, risk score, confidence, and longevity of

large data forensic concerns while drawing

attention to them. Both the ML approaches used to

get the best F-measure, accuracy, and recall scores

are compared, and the complete reputation system

is compared to current reputation systems to see

how well it performs. Our suggested architecture is

not only able to cross-reference with external

sources, but it can also mitigate security concerns

that were previously ignored by legacy reputation

search engines.

Android users may now benefit from the

MalDozer software created by (Karbab et al., 2018).

This Android app relies on deep learning-based

series categorization. MalDozer starts with the bare

bones of an app's API strategy calls and learns to

identify Android malware by separating malicious

and benign cases. MalDozer is a malware detection

application for Android devices that may be used

on smartphones, tablets, and even Internet of

Things devices. They use a wide variety of Android

malware datasets, ranging from 1K to 33K

malicious apps, and 38K benign apps, to evaluate

the MalDozer app. With an F1-Score of 96% e99%

and a false positive rate of 0.06 % e2% on a

comprehensive testing dataset, their results

demonstrate that MalDozer can accurately detect

malware and assign it to its authentic families.

A new approach for identifying and categorising

Android malware has been proposed (McLaughlin

et al., 2017). A Deep Convolutional Neural

Network technique was used in the suggested

framework (CNN). Malware detection and

classification relies on a static analysis of the raw

opcode sequence recovered from an executable's

disassembly. The network intuitively picks up on

elements indicative of malware from the primitive

opcode sequence, doing away with the need for

specially created malware features. Long n-gram-

like characteristics, which aren't computationally

feasible with current methods, may also be used

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 4

because of the network setup. Once the network is

ready, it can be efficiently executed on a GPU,

allowing a very large number of files to be scanned

in a short amount of time.

De-LADY (DLearning-based Android malware

detection utilising Dynamic characteristics) is an

obfuscation-resistant method proposed by Shihang

et al. (2021). Dynamic analysis of a programme

running in an emulation environment provides the

basis for this. There are a total of 13533

applications across various industries (such as

finance, entertainment, and utilities) that are used to

test the suggested method. With a 98.08 percent

detection rate and an F-measure of 98.84 percent,

De-LADY is very successful.

To detect malicious software on Android devices,

a new method has been proposed (Kim et al., 2017).

Features are enhanced using a fact based or

comparability based component extraction

approach for effective feature portrayal on malware

detection. Their system uses a variety of features to

reflect the attributes of Android apps from a variety

of perspectives. A multimodal Deep Learning

technique for identifying malware applications/files

was also presented. They ran a battery of trials with

a total of 41,260 cases to see how well their model

worked. When compared to other Deep Neural

Network models, they discussed the superior

accuracy of their own. In addition, they assessed

their framework in a number of ways, such as

model update efficiency, component usefulness,

and representation approach. They also compared

their framework's performance to that of other

methods, such as a deep learning-based approach.

Traditional Machine-Learning Techniques and

Deep learning approaches are compared and

contrasted using public and private datasets for

malware identification, classification, and grouping

(Vinayakumar et al., 2019). Their exploratory

research makes use of public and private datasets,

both of which include train and test portions that are

separate from one another and were collected at

different periods. They also suggest a new way of

dealing with images that has good limits for use in

Machine Learning and Deep Learning. Extensive

testing and evaluation of these methods show that

they perform better than conventional Machine-

learning Algorithms. Overall, their study provides a

flexible and composite Deep-Learning system for

real-time execution, allowing for the effective

visual finding of malware.

(Souri and Hosseini, 2018) provides a

comprehensive analysis of the malware

identification technologies that make use of Data

Mining techniques. Additionally, it divides malware

recognition methods into two primary categories:

signature-based and behavioral-based approaches.

Specifically, they will be focusing on the following

areas: (1) providing a rundown of the latest

developments related to malware detection methods

in Data mining; (2) presenting a precise and

organised outline of the latest approaches to dealing

with Machine-Learning components; (3) delving

into the design of the massive techniques used in

the malware detection method; and (4) analysing

the important elements of classifying malware

methods in Data mining. This research helps

researchers get a holistic understanding of evaded

malware identification and enables specialists to

make informed evaluations moving forward.

To deal with the exponential growth of Android

malware, SIGPID is introduced (Li et al., 2018), a

malware identification framework based on

authorisation usage breakdown. By mining the

consent information, they were able to identify the

three key authorizations that may be convincing for

distinguishing between benign and harmful

programmes. In order to distinguish between

malicious and safe programmes, SIGPID employs

Machine Learning based categorization approaches.

Based on their findings, just 22 permissions are

really necessary. They contrasted the efficacy of

their technique, which required just 22 permissions,

to that of a standard procedure that considered

every possible authorisation. When using Support

Vector Machine (SVM) as the classifier, they are

able to achieve results that are comparable to the

baseline method in terms of accuracy, recall,

precision, and F-measure (more than 90%). They

evaluated it in relation to other cutting-edge

strategies. Their improved SIGPID is able to

differentiate 93.62 percent of malware in the

training set and 91.4 percent of tests on

unknown/new malware.

According to (Yanfang, 2017) conducted a high-

level data mining scan for malware detection. They

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 5

begin with a brief introduction to malware and the

anti-malware sector before moving on to the

technical specifications for malware identification.

In addition, they reviewed existing methods for

detecting sophisticated malware. The recognition

process is broken down into two stages in these

methods: component extraction and clustering.

Smart malware detection techniques are often

shown using extracted components and clustering

techniques. They look into the component

extraction and clustering techniques in depth.

Finally, they make predictions about future trends

in malware development after examining the

additional problems and difficulties of malware

recognition using Data mining techniques.

Taylor et al. (2021) provides a Deep Learning-

based strategy for finding malware. A malware

dataset, including both malicious and clean files, is

used by our system. This dataset has 72 columns.

Input data totalled 18929, and the Deep Forward

Neural Network Algorithm was run with a 32-batch

size and a 50-epoch epoch to train the Deep

Learning Model's Dense layer, two input layers, and

one output layer. Their system's accuracy improved

to around 99.94% after training. For real-time

detection and classification of dangerous

applications and benign applications, the model was

stored and delivered to web using the python

framework. They also compared our trained model

to other existing systems and found that our

proposed model is more accurate.

III. DESIGN METHODOLOGY

Figure 1: Architecture of the Proposed System.

A. Dataset: There are 1,079 API call sequences

from legitimate software and 42,797 from

malware in the dataset. The 'calls' portions of

Cuckoo Sandbox reports are parsed to construct

API call sequences, with each sequence

consisting of the first one hundred consecutive

API calls connected with the parent process.

Goodware was gathered from portablepps.com

and a 32-bit Windows 7 Ultimate directory,

while malware was gathered via VirusShare. The

dataset was made more diverse by include

software available for download online as well

as locally developed software. Cuckoo Sandbox,

a popular open-source automated malware

analysis system that can observe processes'

activity while operating in isolation, was used to

collect the API call sequences from each sample.

Figure 3.3 displays a subset of the dataset.

Figure 2: Dataset Sample

B. Data Pre-processing: This concerns vetting nan

values and cleaning up the dataset from noise.

The preprocessing may be seen below in its

mathematical representation.

To calculate the width of the output data (d), we

need to know the filter size (f), the padding size (P),

and the stride (s). Below is the mathematical

expression that will be used to refine the data using

the gaussian function.

Where G is the Gaussian function with x and y as

the input data, σ is the learning rate, and e is the

edge of the object

C. Feature Extraction

This is related to the features or columns chosen

for usage in the deep learning model's training

process. Here, we extracted two useful

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 6

features/columns from the original dataset to use as

the basis for a new dataset. Name and Malware are

the columns in question. The Malware column has

values of 0 and 1, where 0 represents benign files

and 1 represents malware files, while the Name

column comprises 19612 apps and files that are

both malicious and safe (Unsafe). A hypervisor is a

piece of software that acts as an intermediary

between the host computer and the virtual machines

it hosts. Thus, data can be gathered from the

underlying hardware, the hypervisor, and the virtual

machine. To extract and gather these characteristics,

we use Xentrace, a hypervisor-based tracking tool,

and perf, a Linux-based performance collecting tool.

Figure 3 depicts the extracted characteristics of the

dataset.

Figure 3: Extracted Features

D. Recurrent Neural Network: The LSM technique

was used to teach the model. Malware data will

be used to train the LSTM model. The Long

Short-Term Memory (LSTM) algorithm is a kind

of RNN. TensorFlow Framework and the Keras

library will be used to create the LSTM model.

Because of the sequential nature of the Keras

API, we construct the network in layers. Here

are the different levels:

A 100-dimensional embedding in which each

input word is converted into a vector. We

provide pre-trained weights as a parameter to the

embedding (more on this in a moment). If the

embeddings are stable, we may leave trainable

set to False.

Any words for which an embedding has not been

previously taught will be hidden using a

Masking layer. Training embeddings should

proceed without this layer.

A layer of LSTM cells with dropout to avoid

overfitting serves as the network's central

processing unit. The sequences are not returned

since we are only using a single LSTM layer; if

you are using two or more layers, this should be

corrected.

A Dense layer that is completely linked and is

activated via relu. As a result, the network's

capacity for representation grows.

Overfitting the training data is avoided via a

Dropout layer.

Dense layer of output connections. The result of

this process, which employs softmax activation,

is a probability for each word in the vocabulary.

E. Output: The output shows the output of the

system after various inputs has been entered. The

output of the system can be either malicious file

and Benign Files.

IV. COMPONENT DESIGN

The component design is the breakdown of the

component in the proposed system architecture.

This is always needful because it shows further

other sub-components that were not made known in

the design of the system architecture. Figure 4

shows the sub-component of the LSTM architecture.

1 Algorithm for LSTM

Here is a general outline of the LSTM algorithm:

1. Initialize the weights and biases of the

LSTM network.

2. For each time step 't' in the input sequence:

a. Get the current input 'x_t' and previous hidden

state 'h_{t-1}'. b. Calculate the forget gate 'f_t',

input gate 'i_t', and output gate 'o_t' using the

following equations:

i. forget gate 'f_t': f_t = σ(W_f . [h_{t-1}, x_t]

+ b_f)

ii. input gate 'i_t': i_t = σ(W_i . [h_{t-1}, x_t]

+ b_i)

iii. output gate 'o_t': o_t = σ(W_o . [h_{t-1},

x_t] + b_o) c. Calculate the candidate memory cell

'c_~t' using the following equation: c_~t =

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 7

tanh(W_c . [h_{t-1}, x_t] + b_c) d. Update the

memory cell 'c_t' using the forget gate and

candidate memory cell as follows: c_t = f_t * c_{t-1}

+ i_t * c_~t e. Update the hidden state 'h_t' using

the memory cell and output gate as follows: h_t =

o_t * tanh(c_t)

3. Repeat steps 2 for all the time steps in the

input sequence.

4. Output the final hidden state 'h_T', which

summarizes the information from the entire input

sequence.

5. Use the final hidden state as input to a fully

connected layer to obtain the final prediction.

Note: In the equations above, 'W_f', 'W_i', 'W_o',

'W_c' are the weight matrices, 'b_f', 'b_i', 'b_o', 'b_c'

are the bias vectors, and 'σ' is the sigmoid activation

function.

Figure 4: Component Design

The LSTM model developed for this investigation is shown

graphically in Figure 3. Output layer, activation functions

(sigmoid and tanh), input layer, hidden layer, and cell state

make up the LSTM model. The following provides further

information on the LSTM architecture:

Forget Gate: calculates the forgotten information f(t) by

fitting a sigmoid to the concealed state h-(t) and the input x-(t).

Input Gate: selects which updated cell state,c-(t) data to

store. To determine which values to update (,i-(t)), a sigmoid

is applied to the hidden state (h-(t1)) and the input (,x-(t)), and

a tanh is applied to the hidden state (,h-,t1..) and the input (,x-

(t)) to create a vector of new candidate values (,c-(t)).

Cell State update: While not a true gate, this operation

updates the state over time by adding,c-(t1) to the current state.

combined with the product of the outputs of the input gates (i-

(t), c-(t), and the forget gate (f-(t)).

• Output Gate: determines the result ct by reapplying the

sigmoid to the now-revealed state,h-(t1). by taking the

input,x-(t), multiplying it by the current long-term state, c-(t),

and taking the result.

Algorithm 2 Feature vector generation of AP1 calls

1: ∆: Dataset of malware and benign behavior analysis

reports [fi]

2: processed_api_arg: List of the generalized API calls

and arguments

Given: common_malware_types,

common_registry_keywords and ∆

Results: (1) Feature vector of Method 1

[Feature_VectorM1], and

Method 2 [Feature_VectorM2]

3: processed_api_arg = {}

4: foreach fi ∈ ∆ do

5: Process the log file and extract its list of API calls

(APIij) and arguments (ARGijk)

6: Remove the suffix from the API name

[’ExW’, ’ExA’, ’W’, ’A’, ’Ex’]

in APIij ∈ fi

7: foreach ARGijk ∈ APIij do

8: switch (ARGijk)

9: Check if the common malware file types exists in

 command_line

10: case command_l ine:

11: Call Algorithm 4

12: Check if the regkey value is one of the common

regkey for malware

13: case ’regkey’:

14: Call Algorithm 3

15: case ’path’ or ’directory’:

16: Call Algorithm 5

17: Remaining arguments with integer values, convert

them into bin-based tags

18: case IsNumber(ARGijk):

19: Call Algorithm 2

20: Remaining arguments with concrete values will not

be changed

21: else:

22: processed_api_arg[ARGijk] = value(ARGijk)

23: end switch

24: end foreach

25: Features are constructed using Method 1 and

Method 2 formulas

26: M1processed_api_arg =

Method1(processed_api_arg)

27: M2processed_api_arg =

Method2(processed_api_arg)

28: Generate Method 1 and Method 2 feature vectors

from the processed_api_arg using

HashingVectorizer function

29: Feature_VectorM1 =

HashingVectorizer(M1processed_api_arg)

30: Feature_VectorM2 =

HashingVectorizer(M2processed_api_arg)

31: end foreach

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 8

32: return Feature_VectorM1, Feature_VectorM2

V. RESULTS

The experimental result is made up of two phases.

The first has to do with the exploratory data

analysis and the second has to do with the training

of the model.

A. Exploratory Data Analysis

This section gives a detailed analysis on the

malware features extracted via API calls. In other to

get a better training result in terms of model

accuracy, precision, and recall, data cleaning

processes was carried out. Figure 5. shows a

histogram of the total number of files that are

malicious, and files that are not malicious.

Figure 5: A Countplot of the Dataset

This shows the total number of Benign files and malicious

files that are present on the dataset.

Figure 6: Tokenized and Converted to Data

B. Model Training

The model was trained using Recurrent Neural

Network. The model was trained using the four

layers. The first layer contains an input neuron

of 20, and used relu as activation function. The

second layer contains an input neuro of 10, and

activation function of tanh. The third layer

contain an input neuron of 1024, and an

activation function of relu, and finally the fourth

layer being the output layer used sigmoid as

activation function. Other hyper parameters used

in training the model are loss=

binary_crossentropy, optimizer=adma, epoch, 20

and batch_size =15. The training result which

displays the loss and accuracy acquired at each

training steps can be seen in Figure 7. The

graphical representation of the loss and accuracy

values during training and testing can be seen in

Figure 8 and 9 respectively. A classification

report of the model can be seen in Figure 10.

The classification report contains accuracy,

precision, recall, and f-score measure. Figure 11

represents the confusion matrix of the model that

shows the number of true predictions of the

model on the categories 1 and 0. Where 0

represents Benign and 1 represents malicious

attacks.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 9

Figure 7: The Training Process of the Recurrent Neural

Network Model Which Tests Displays the Training Steps,

Loss Values and Accuracy for 1-10 Epochs (Training

Steps).

Figure 8: A Graphical Representation of Training

Accuracy Vs Training Epochs

Here the model shows a training accuracy of about 99%

and a test accuracy of about 98%.

Figure 9: A Graphical Representation of Training Loss

Values Vs Training Epochs

Here the model had a loss values below 0.1% for both

training and testing.

Figure 10: Classification Report of the Recurrent Neural

Network Model.

Figure 11: Confusion Matrix of the proposed Recurrent

Neural Network

The confusion matrix shows the predicted result vs the actual

prediction.

VI. DISCUSSION OF RESULTS

From the experiment conducted Figure 5

described the total number of files that are

malicious and benign. This shows that over 1400

files are of malware attack and 1400 are of benign.

Before passing the data to the deep learning model,

the has function column needs to pass through

tokenization process. This is to say that the query

column needs to be tokenized and converted to

arrays. Figure 6 shows the tokenized and

transformed data. In Figure 6, all the features have

been converted to numerical form. This was done

so that it can fit in the deep learning model. Figure

7 shows the training process of the model. Here the

model was trained on 10 steps. Figure 7 also shows

the accuracy and loss obtained from each of the step

completed. Figure 8 shows the accuracy obtained

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 10

for both training and validation test. The training

and validation accuracy are used in testing the

performance of the model during training and also

on a test dataset. The model achieved a training

result of about 98% and a test result of about 98%.

Figure 9 shows the losses of the model for both

training and testing data. The model has a loss

value below 0.1 for both training and testing. Figure

10 shows the classification report of the model. The

classification report is a summation of accuracy,

precision, recall and f- measure. Precision has to do

with the correct classification of the model in terms

of false positive, false negative, true positive and

true negative. The precision score of the model are

about 100% correct classification for queries that

are benign and 100% correct classification for files

that are of malware attack. The support column in

Figure 10 shows the total number of classifications

that was carried out by the model. Figure 11 shows

the confusion matrix of the proposed system.

Confusion matrix depicts the total number of

correct prediction and the total number of false

classifications. The confusion matrix shows that out

of 1021 classification on attacks that are of benign,

the model predicted correctly for 1021 and

predicted falsely for 0 times. Then for attacks that

are of malicious attacks, the model predicted

correctly 1035 times and predicted falsely for just 0.

This shows the performance of the model is in good

shape.

VII. CONCLUSIONS

This paper developed a system for the accurate

detection of dynamic malware via API calls. This

was achieved by analyzing the behavioural pattern

of dynamic malware using exploratory data analysis.

The exploratory data analysis has to do

visualization of data. The visualization of data helps

to uncover the patterns of the dynamic malware

attack via API calls. A recurrent neural network

model was trained for detecting future attacks of

dynamic malware via API calls. The model was

trained using dynamic malware data. The data

comprise different attacks of dynamic malware that

were carried out via API calls. The result of the

system was compared with other existing systems.

Here the results show that the proposed system

outperformed the existing system with an accuracy

result of 99.99%. Future recommendation of this

research will be directed towards the detection of

dynamic malware on edge devices. Causal

Productions is credited in the revised template as

follows: “original version of this template was

provided by courtesy of Causal Productions

(www.causalproductions.com)”.

ACKNOWLEDGMENT

REFERENCES
[1] Burnap, P., French, R., Turner, F. & Jones, K. (2018). Malware

classification using self-859 organizing feature maps and machine
activity data. Computer Security, 73, 399–410.

[2] Elhadi, A. A. E., Maarof, M. A. & Barry, B. I. (2013). Improving the

detection of malware be- 874 haviour using simplified data dependent
API call graph. International Journal Security Application, 7 (5), 875

29–42.

[3] Eslam, A. & Ivan, Z. (2018). A dynamic Windows malware detection
and prediction method based on contextual understanding of API call

sequence. Computers and Security, 30(40), 1-15.

[4] Gandotra, E., Bansal, D. & Sofat, S. (2014). Malware analysis and
classification: a survey. 885 Journal of Information Security, 5 (02), 56.

[5] Gibert, D., Mateu, C. & Planes, J. (2020). The rise of machine learning

for detection and classification of malware: Research developments,
trends and challenges. Journal of Network and Computer Applications,

153, 1-22, 2020.

[6] Karbab, E. B., Debbabi, M., Derhab, A. & Mouheb, D. (2018).
MalDozer: Automatic framework for android malware detection using

deep learning, Digital Investigation 24, 548-559.

[7] Kim, T., Kang, B., Rho, M., Sezer, S. & Gyu, E. (2019). A Multimodal
Deep Learning Method for Android Malware Detection using Various

Features, in IEEE Transactions on Information Forensic and Security,
10(3), 773-778.

[8] Li, J., Sunk, L., Yan, Q., Zhiqiang, L. Srisaan, W. & Heng, Y. (2018).

Significant Permission Identification for Machine Learning Based
Android Malware Detection, in IEEE Transactions on Industrial

Informatics, 14(7), 3216-3225.

[9] Mario, L., Marta, C., Damiano, D., Fabio, M. & Francesco, M. (2019).
Dynamic malware detection and phylogeny analysis using process

mining. International Journal of Information Security, 18, 257–284.

[10] McLaughlin, N. Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S.,
Safaei, Y., Trickel, E., Zhao, Z., Doupe, A, & Ahn, G. (2017). Deep

Android Malware Detection, Proceeding on the Seventh ACM on

Conference on Data and Application Security and Privacy, 301-308.
[11] Nighat, U., Saeeda, U., Fazlullah, K., Mian, A., Ahthasham S.,

Mamoun A. & Paul W. (2021). Intelligent Dynamic Malware

Detection using Machine Learning in IP Reputation for Forensics Data
Analytics. Future Generation Computer Systems118 (2021), 124–141.

[12] Pengbin, F., Jianfeng M., Cong S., Xinpeng X. & Yuwan M. (2018). A

Novel Dynamic Android Malware Detection System with Ensemble
Learning. IEEE Access, 6, 30996-31011.

[13] Qiao, Y., Yang, Y., He, J., Tang, C. & Liu, Z. (2014). CBM: free,

automatic malware anal- 923 ysis framework using API call sequences.
In: Knowledge Engineering and Man- 924 agreement. Springer, Berlin,

Heidelberg, 225–236.

[14] Ezekiel, P. S., Taylor, O. E., & Deedam-Okuchaba, F. B. (2020). A
model to detect phishing websites using support vector classifier and a

deep neural network algorithm. IJARCCE, 9(6), 188-194.

[15] Taylor, O. E., & Ezekiel, P. S. (2022). A smart system for detecting
behavioural botnet attacks using random forest classifier with principal

component analysis. European Journal of Artificial Intelligence and

Machine Learning, 1(2), 11-16.
[16] Taylor, O. E., Ezekiel, P. S., & Sako, D. J. S. (2021). A Deep Learning

Based Approach for Malware Detection and Classification.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume X Issue X, Year

ISSN :2394-2231 http://www.ijctjournal.org Page 11

[17] Jeremiah P. R., Matthias D. (2022). Phishing URL Detection Using

Machine Learning Classification Algorithms. Journal of Web

Engineering & Technology, 9(3), 22-33.

Mail your Manuscript to

editorijctjournal@gmail.com

editor@ijctjournal.org

http://www.ijctjournal.org/
mailto:editorijctjournal@gmail.com
mailto:editor@ijctjournal.org

