
International Journal of Computer Techniques – Volume 10 Issue 2, 2024

ISSN :2394-2231 http://www.ijctjournal.org/ Page 1

Modularization in JavaScript: Applying Advanced
Methods for Optimization

Chakradhar Avinash Devarapalli, Software Developer

E-mail: avinashd7[at]gmail.com

Abstract: The modern digital era requires quick responses from the end users which holds the developers
responsible for generating more optimized products. The modularization helps achieve this objective by enabling
the developers to write more optimized and manageable code. The code splitting comes with the major advantage
of faster initial page loading to save the time at user's end. However, there are certain challenges associated with
the implementation of code splitting in JavaScript and it comes with difficulties in later stages after product
development. This paper not only explores the role of modularization in optimization but also suggests solutions
against the presented potential challenges faced by the developers during implementation. The best practices are
recommended to avoid the risk of failure while carrying out code splitting in JavaScript. Some of the commonly
known technologies can be used as troubleshooting methods for the effective implementation of this beneficial
technique in programming.

Keywords: Code Splitting, Modularization, Maintainability, Reusability, Scalability, JavaScript, Optimization

1. Introduction
With the evolution of technology, users are getting
concerned about the response time of digital
products. Moreover, the applications developed
using JavaScript are increasing enormously with the
demand for this language. With the introduction of
more features, the complexity of applications has
increased. Therefore, the complexity of applications
and the requirement for efficiency lead the
developers to adopt effective ways to optimize their
code. One way to solve this problem is
modularization also known as code splitting which
divides the code into smaller modules that are easier
to manage [1], [2].
The JavaScript allows code split to improve
responsiveness in loading. When all the components
are loaded in a web page for instance, the JavaScript
is required to be integrated with them and executing
all the JS code altogether may lead to delayed
responses. Therefore, only the required JS code is
loaded which is needed to make the initial page
functional and later actions of users call the other
code bundles. This reduces the efforts in parsing and
executing JS codes during startup [3].

This research explores the role of code splitting and
the problems faced by the developers during the
implementation of modularization which is splitting
the code into bundles and use as separate units
where needed. The common problems faced during
development and in later stages are difficulty in
deployment, collaboration, maintainability, scalability,
reusability, performance, compatibility, security,
communication between modules, dependency
conflicts, debugging, and testing. Effective solutions
are suggested to overcome these problems including
appropriate tools and best practices that can be
followed during implementation.
The two main approaches to modularization are
CommonJS and ES Modules. ECMAScript offers a
standardized module system but React and Node.js
use commonJS instead of ES modules [4] . This is
because commonJS became the standard for Node.js
earlier before the introduction of ES in it. The main
difference comes with loading as commonJS gives
synchronous and the other gives asynchronous
loading [5].
Taking advantage of diverse JavaScript functionalities
and utilizing the formats of CommonJS and ES from

http://www.ijctjournal.org/


International Journal of Computer Techniques – Volume 10 Issue 2, 2024

ISSN :2394-2231 http://www.ijctjournal.org/ Page 2

ESMAScript, this research explores the
modularization methods along with the solution to
given challenges. CommonJS module format is for
server-side applications and AMD is for client-side or
browser-based applications. Different loaders,
plugins and optimization methods are supported by
these formats [5].

2. Literature Review
The JavaScript is a rich language in terms of usability
and optimization which reflects in its diverse usage
across platforms specifically in web based
applications. It primarily offers the functionality of
modularization with different environments and
libraries like Node.js and React respectively. Thus this
language has enormous power for completing the
desired tasks [6] . Modularization refers to the
division of application into smaller modules each
having some functionality. This offers useful
advantages like reusability and maintainability [1] .
The various formats including commonJS and
Asynchronous Module Definition are available in
addition to ES modules for effective splitting.
The modular programming however is equipped with
numerous challenges that a developer need to face
from development to deployment of the system. One
of the highlighted problem is that, the developers
don’t have access to individual files. The problem
may arise when scripts are not loaded properly and
order of action or appearance gets effected. The
entire page may get blocked when one script or
bundle is dependent on the other and the execution
is blocked from one end [7] . However, the list of
problems is not limited to this only and may extend
to a large scope. Therefore, there is a need to
overcome these challenges and to present
appropriate solutions against each problem that can
be occurred while code splitting.

3. Problem Statement
Although modularization offers numerous benefits to
developers as well as end users with optimized
products, there are certain obstacles associated with
its implementation. The highlights of these problems
are difficulty in dependency management, code

maintenance, performance issues, challenges in
scalability and compatibility, and testing difficulties.
The goal is to mitigate these problems to equip the
developers with appropriate solutions to face these
issues. There is also a need for developers to follow
suitable ways to implement the code-splitting
methods in JavaScript.

4. Breaking Barriers of Code-Splitting
4.1. Deployment Problems
The dependencies are complex to handle when it
comes to deployment. The multiple dependencies
may raise conflicts when merged in the system
altogether. This problem can be solved by employing
effective collaborations and utilizing the automation
tools. Further tools like Docker can be used to
package the modules.
4.2. Collaboration Challenges
It is however not easy to collaborate effectively while
carrying out code splitting. When code is splitted in
bundles it becomes difficult to keep everyone
informed with the latest changes in each bundle. This
becomes more challenges when team size increases.
To overcome this problem, there is a need to follow
standards and maintain documentation of each
update. The version control systems like Git are
helpful to manage large codebase. These systems
allow to not only collaborate effectively but to keep
the record of changes in different versions.
4.3. Maintainability and Scalability
With the increased size of codebase, it becomes
difficult for large teams to maintain and scale module
based codes. The recommended way to overcome
this problem to use the Single Responsibility Principle
where each member of the team is responsible for
maintaining the individual code and a team has to
handle each bundle of the software they are working
on.
4.4. Compatibility Issues
The different module formats make the system
incompatible and can be challenging to run in some
systems. The tools like CommonJS and AMD are
needed as a source of polyfills for compatibility. The

http://www.ijctjournal.org/


International Journal of Computer Techniques – Volume 10 Issue 2, 2024

ISSN :2394-2231 http://www.ijctjournal.org/ Page 3

automated tools in early stages can reveal the
compatibility of bundles in different environment.
4.5. Security Concerns
The use of third party libraries and dependencies can
lead to the unwanted exposure of the system and
ultimately raises the security concerns. However,
validation techniques and effective coding can help to
avoid the security issues. Moreover, regular updates
and use of scanning tools are also suggested to be
used over a longer run.
4.6. Cross-Modular Connection
The connection in a distributed architecture is
difficult to maintain when certain code changes are
implemented in the latest versions of software.
Therefore, the frameworks like Redux are used for
state management in largely distributed applications.
4.7. Dependency Issues
With the growth of codebase, it becomes difficult to
handle conflicts between dependencies being used
for the individual tasks in each module. The version
conflicts may arise and make it difficult to update
previous deprecated dependency or add a new
dependency which has conflict with the previous one.
The Node Package Manager helps to avoid this
problem in association with tools like Webpack. With
the use of effective package managers and tools, it
becomes easier to manage these external
dependencies.
4.8. Namespace Conflicts
The use of common names of modules in large
systems can generate unwanted errors which are
difficult to manage. Here, the naming conventions
and use of assistance technologies in compilers are
recommended to avoid these naming conflicts
between modules.
4.9. Testing Issues
The multiple dependencies creates complexities
when used for each module and make the system
more robust to test each unit. The dependency
injections are the only best possible way to test if the
dependencies are working correctly and not
deprecated.

5. Useful Methodologies
5.1. WebpackModularization
Webpack is responsible for bundling JS files
and can generate static assets for the given
modules with dependencies. The different
expressions that can be used for webpack are,
import (ECMAScript), require () (CommonJS),
define/require (Asynchronous Module
Definition), imageURL (stylesheet), and
@import (stylesheet) [8] . For instance,
according to their official website, one way to
use this is,
const path = require('path');

module.exports = {
entry: './src/index.js',
output: {

path: path.resolve(__dirname, 'dist'),
filename: 'bundle.js',

},
};

5.2. Route-Based Modularization
The modular routing helps to beat the
challenges when application size increases.
Routing can be effectively used in React [9] ,
[10]. Here is an example code of route-based
code splitting of posts,
<Route exact path='/' component={Home} />
<Route exact path='/posts'
component={PostListing} />
<Route path='/posts/:postId'
component={PostUpdate} />
5.3. Dynamic Import
The dynamic import function is available to split the
code on run time. To optimize the page for fast
loading of components, only the modules that are
required to be used are imported. For instance, the
following code block shows that the code is packed in
a separate module and will only be used when the
user clicks the specified button. [11]

http://www.ijctjournal.org/


International Journal of Computer Techniques – Volume 10 Issue 2, 2024

ISSN :2394-2231 http://www.ijctjournal.org/ Page 4

let button =
document.querySelector('return')

button.addEventListener('click', e => {
return import('./tracker' )
.then(({tracker}) => {

tracker.getUtmParams()
})

})

6. Best Practices
Apart from the suggested solutions, there are certain
ways in which most of the mentioned problems can
be avoided. These are,
 Use ES6: The dependency between the modules

is managed by the import and export options of
ES6. Thus, one module tends to use the other to
the extent it is allowed in the other module.

 SRP: The Single Responsibility Principle is
recommended to be followed where each
module is responsible for a single activity. So, to
make it easier to debug, test, and maintain the
code.

 Encapsulation and Global Scopes: Avoid global
variables and functions, instead use
encapsulation with ES6 classes to prevent outer
access.

 Efficient Splitting: Split the code into smaller
chunks where bundles can be loaded easily when
needed. This helps in improving initial loading
time.

 Continuous Testing: Regularly test the individual
units of the code to get only the expected result.
Use tools like Cypress, Karma, and Playwright.

 Code Documentation: Document through
different ways like manual documentation, using

doc tools, or comments to later understand the
code specifically in terms of code splitting.

 Code Reviews: Regularly review the code to
ensure best practices in coding and to properly
meet the project requirements.

7. Research Impact
Code Splitting positively affects both the user
experience and the performance of the end product.
It also helps to improve the productivity of the
developer. The presented study offers solutions
against the potential barriers to the implementation
and effectiveness of modularization in JavaScript. It
greatly impacts application optimization by
highlighting the challenges of code splitting. The
objective of the presented solutions and providing
the best ways was to help the developer make
informed decisions during the implementation of
modularization in projects.

8. Conclusion
In the end, modularization or code splitting is one of
the widely used techniques in modern JavaScript
programming due to the vast advantages it offers in
terms of code optimization and efficiency in results.
As JS allows code splitting, the bundles can be
separately loaded to reduce the page’s initials JS
payloads. This primarily became more effective after
the CommonJS and ES modules.
Despite all the advantages provided by code splitting
in JavaScript, there are certain obstacles faced by the
developers during the process. To address these
challenges, best practices can be followed by
considering appropriate solutions provided in the
document. More methods are evolving with time for
effective modularization to help developers optimize
their applications.

http://www.ijctjournal.org/


International Journal of Computer Techniques – Volume 10 Issue 2, 2024

ISSN :2394-2231 http://www.ijctjournal.org/ Page 5

References
[1] S. Seydnejad, Modular Programming with JavaScript, Birmingham, UK: Pakt Publishing Ltd. , Jul. 2016.

[2] C. Mulder, "Challenges of Web Application Development: How to Optimize Client-Side Code," Aug. 2011.

[3] "Code-split JavaScript," web.dev, 04 Dec 2023. [Online]. Available:
https://web.dev/learn/performance/code-split-javascript. [Accessed 2024 Mar 20].

[4] M. Mráz, "Component-based UI Web," MASARYK UNIVERSITY , 2019.

[5] K. Ubah, "CommonJS vs. ES modules in Node.js," LogRocket, 29 Dec 2021. [Online]. Available:
https://blog.logrocket.com/commonjs-vs-es-modules-node-js/. [Accessed 21 Mar 2024].

[6] D. Crockford, JavaScript: The Good Parts, Sebastopol: O'Reilly Media Inc. , May. 2008.

[7] "Modularizing and Managing JavaScript," inModern JavaScript, O'Reilly Media, Inc., Sep. 2015.

[8] A. Shiravanthe, "Modules and Code Splitting in Webpack 5," Medium, 20 Sep 2020. [Online]. Available:
https://medium.com/@abhayshiravanthe/modules-and-code-splitting-in-webpack-5-6ce0a58d7f36.
[Accessed 21 Mar 2024].

[9] K. Orjiewuru, "Cleaner and Modular Routing in React," Software Insight, Oct. 2019.

[10] A. Bijarniya, "What Is Route-Based Code Splitting in React.js?," C-sharpcorner, 05 Mar 2024. [Online].
Available: https://www.c-sharpcorner.com/article/what-is-route-based-code-splitting-in-react-js/.
[Accessed 2024 Mar 22].

[11] E. Odioko, "Dynamic imports and code splitting with Next.js," 25 Aug 2022. [Online]. Available:
https://blog.logrocket.com/dynamic-imports-code-splitting-next-js/. [Accessed 20 Mar 2024].

http://www.ijctjournal.org/

	Modularization in JavaScript: Applying Advanced Me
	1.Introduction
	2.Literature Review
	3.Problem Statement
	4.Breaking Barriers of Code-Splitting
	4.1.Deployment Problems
	4.2.Collaboration Challenges
	4.3.Maintainability and Scalability 
	4.4.Compatibility Issues
	4.5.Security Concerns
	4.6.Cross-Modular Connection
	4.7.Dependency Issues
	4.8.Namespace Conflicts
	4.9.Testing Issues

	5.Useful Methodologies
	5.1.Webpack Modularization
	5.2.Route-Based Modularization
	5.3.Dynamic Import

	6.Best Practices
	7.Research Impact
	8.Conclusion
	References


