
International Journal of Computer Techniques -– Volume 9 Issue 1, Jan-Feb 2022 
 

ISSN: 2394-2231                                                        http://www.ijctjournal.org                      Page 1 
 

A multi objective Genetic Algorithm for cloud 

service reservation 

 Mr. Monilal S* 

1*Lecturer, Dept. of computer science   

Govt Polytechnic College, Ezhukone, Kollam, India 

monilal.s@gmail.com

 
Abstract—Cloud is one of the emerging technology in computer 

industry. Several companies migrates to this technology due to 

reduction in maintenance cost . Several organization provides 

cloud service such as SaaS, IaaS, PaaS. Different organization 

provides same service with different  service charges and waiting 

time. So customers can select  services from  these cloud 

providers according to their criteria like cost and waiting time.  

By using ‘demand pricing’ strategy, providers can provide 

services with minimum cost without  loosing any income or 

valuable resource time. But the existing system doesnot provide 

any automated job scheduling  considering consumer cost, 

provider benefit , consumer waiting and provider idle time. This 

paper propose a multi objective genetic algorithm for solving this 

multivariable optimization problem. This system provides a new 

cloud brokering mechanism with cloud service discovery using 

this optimization technique. This paper consider IaaS. In this 

system user submit a job to cloud. Cloud provides infrastructure 

to run this job and gave output to user. Here aim of user is to 

obtain output with minimum time and minimum cost. At the 

same time aim of provider is to increase the income. For that 

provide run more job with in unit time. So We have to minimize 

consumer cost, consumer waiting time and provider idle time , 

and maximize provider benefit . 

IndexTerms— Cloud, Adhoc Genetic algorithm, Iaas.  
 

I. INTRODUCTION 

Cloud is one of the emerging technology in computer 

industry. Several companies migrates to this technology due to 

reduction in maintenance cost . Several organization provides 

cloud service such as SaaS, IaaS, PaaS. Different organization 

provides same service with different  service charges and 

waiting time. So customers can select  services from  these 

cloud providers according to their criteria like cost and waiting 

time.  By using ‘demand pricing’ strategy, providers can 

provide services with minimum cost without  loosing any 

income or valuable resource time. But the existing system does 

not provide any automated job scheduling  considering 

consumer cost, provider benefit , consumer waiting and 

provider idle time. This paper propose a multi objective genetic 

algorithm for solving this multivariable optimization problem. 

This system provides a new cloud brokering mechanism with 

cloud service discovery using this optimization technique.  

In practice, customers  have to pay close attentions to the 

randomness of the duration of the activities since they  directly  

impact on the total cost  of completing a job and the  

completion time of  the job. Also, there usually exists  a trade- 

off relation between the resource allocation and the duration of 

the activities. In this study , we propose a genetic algorithm  

(GA) as a decision support tool so as to optimally allocate the 

available resources to minimize the expected total cost  (which 

include resource usage cost an d tardiness cost) for finishing 

the job. In order  to evaluate the expected total cost, one needs 

to calculate the mean of the job execution time. Though time 

cost negotiation mechanism could be a simple and 

straightforward approach, its total utility function  become  

impractical when the number of jobs in the cloud is large. 

Therefore, we propose a new  mathematical model for 

calculation job waiting time , cost of execution,  provider idle 

time.  

 

II. RELATED WORK 

In 2008, A heuristic method to schedule bag-of-tasks (tasks  

with  short  execution  time  and  no  dependencies) in  a  cloud  

is  presented  in   so  that  the  number  of virtual  machines  to  

execute  all  the  tasks  within  the budget,  is  minimum  and  

the  same  time  speedup.  In 2009,  Marios  D.  Dikaiakos  and  

George  Pallis  realized the  concept  of  organization  of  

Distributed  Internet Computing  as  Public  Utility  and  

addressed  the  several  significant  problems  and  unexploited  

opportunities concerning the deployment, efficient operations 

and use  of  cloud  computing  infrastructures .  In  2009,  Dr. 

Sudha  and  Dr.  Jayarani  proposed  the  efficient  Two-level  

scheduler  (user  centric  meta-scheduler  for selection of 

resources and system centric VM schedular for  dispatching  

jobs)  in  cloud  computing  environment  based  on  QoS.  In  

2010,  Yujia  Ge  and  Guiyi  Wei proposed a new scheduler 

which makes the scheduling decision by evaluating the entire 

group of tasks in a job queue.  A  genetic  algorithm  is  

designed  as  the optimization method for a new scheduler who 

provides  better  makespan  and  better  balanced  load  across  

all nodes than FIFO and delay scheduling . In 2010, An 

optimal scheduling policy based on linear programming, to  

outsource  deadline  constraint  workloads  in  a  hybrid cloud  

scenario  is  proposed  in .  In  2011,  Sandeep Tayal  proposed  

an  algorithm  based  on  Fuzzy-GA optimization  which  

evaluates  the  entire  group  of  tasks in a job queue on basis of 

http://www.ijctjournal.org/
mailto:umeetsaira786@gmail.com


International Journal of Computer Techniques -– Volume 9 Issue 1, Jan-Feb 2022 
 

ISSN: 2394-2231                                                        http://www.ijctjournal.org                      Page 2 
 

prediction of execution time of  tasks  assigned  to  certain  

processors  and  makes  the scheduling decision . In 2011, 

Laiping Zhao, Yizhi Ren  &  Kouichi  Sakurai  proposed  a  

DRR  (Deadline, Reliability,  Resource-aware)  scheduling  

algorithm, which  schedules  the  tasks  such  that all the jobs  

can  be completed before the deadline, ensuring the Realiability 

and minimization of resources .In 2011, S. Sindhu & Saswati  

Mukherjee  proposed  two  algorithms  for  cloud computing  

environment  and  compared  it  with  default policy  of  

cloudsim  toolkit  while  considering computational complexity 

of jobs. This paper provided us a framework for our 

investigation . 

This paper  “A Price- and-Time-Slot-Negotiation 

Mechanism for Cloud Service Reservations” provides  an 

efficient cloud resource provisioning using cost and free slots 

in cloud. Three types of utility  functions are used to model 

time cost behavior preferences. They are  

1. Price utility function :- consumers prefer the cheapest 

price for leasing a service providers want to sell their services 

at the highest prices. 

2. Time-Slot Utility Function:  a novel time-slot utility 

function is designed to model consumers’ and providers’ 

preferences for different time slots. A consumer can have 

multiple sets of acceptable time-slot preferences. A provider’s 

time-slot preferences are based on the following:  

a) service demand 

b) temporal ordering 

c) fitting job size  

3. Aggregated total utility function :- this is a combined 

value of time and price utility function. 

But this paper doesn’t consider provider benefit and 

consumer waiting time.  These issues are considered for our 

work. Here We present a new resource provisioning 

mechanism using Genetic Algorithm. 

But this paper doesn’t consider provider benefit and 

consumer waiting time.  These issues are considered for our 

work. Here We present a new resource provisioning 

mechanism using Genetic Algorithm. 

Cloud is one of the emerging technology in computer 

industry. Several companies migrates to this technology due to 

reduction in maintenance cost . Several organization provides 

cloud service such as SaaS, IaaS, PaaS. Different organization 

provides same service with different  service charges and 

waiting time. So customers can select  services from  these 

cloud providers according to their criteria like cost and waiting 

time.  By using ‘demand pricing’ strategy, providers can 

provide services with minimum cost without  loosing any 

income or valuable resource time. But the existing system 

doesnt provide any automated job scheduling  considering 

consumer cost, provider benefit , consumer waiting and 

provider idle time. This paper propose a multi objective genetic 

algorithm for solving this multivariable optimization problem. 

This system provides a new cloud brokering mechanism with 

cloud service discovery using this optimization technique.  

 

III. SYSTEM MODEL 

A. Mathematical Modeling of Your Objective 

Cloud is one of the emerging technology in computer 

industry. Several companies migrates to this technology due to 

reduction in maintenance cost . Several organization provides 

cloud service such as SaaS,  IaaS,  PaaS. Different organization 

provides same service with different  service charges and 

waiting time. So customers can select  services from  these 

cloud providers according to their criteria like cost and waiting 

time.  By using ‘demand pricing’ strategy, providers can 

provide services with minimum cost without  loosing any 

income or valuable resource time. But the existing system 

doesn’t provide any automated job scheduling  considering 

consumer cost, provider benefit , consumer waiting and 

provider idle time. This paper propose a multi objective genetic 

algorithm for solving this multivariable optimization problem. 

This system provides a new cloud brokering mechanism with 

cloud service discovery using this optimization technique.  

Here we propose  a model for broker mechanism , that 

allocate jobs to different VM according to our criteria.  For that 

we use genetic algorithm.  By using this algorithm We generate 

different job scheduling sequence and select best sequence. 

Best sequence selection is based on a rank. This rank 

calculation is shown below.  

 

 
 

R- Rank 

Nj – Number of jobs 

Wi – Weighting time of ith Job 

Pi – Profit of ith VM 

Nvm – Number of VM 

Ti – Idle time ith VM 

Ci-  cost of ith Job  

Here We select sequence with minimum rank. In this way, 

NGA generate new sequence. During this generation,  NGA 

minimize rank. Here rank is the sum of waiting time, profit 

lose , consumer cost and cloud idle time.  So these generations 

minimize above factors. 

 

http://www.ijctjournal.org/


International Journal of Computer Techniques -– Volume 9 Issue 1, Jan-Feb 2022 
 

ISSN: 2394-2231                                                        http://www.ijctjournal.org                      Page 3 
 

B. Architecture 

 
This architecture is based on Eucalyptus cloud. We modify first 

layer of this architecture. In first layer we provider an 

authentication mechanism , NGA query executer and 

scheduler. 

 

NGA query executer perform NGA algorithm based on user 

request and provides scheduling datas to user. Similarly same 

algorithm works on other clouds providing scheduling data. 

Based on these datas user select  a choice and allocate job to 

that cloud using corresponding scheduler.  

IV. METHODOLOGY 

A.   Genetic Algorithm 

In a genetic algorithm, a population of candidate solutions 

(called individuals, creatures, or phenotypes) to an 

optimization problem is evolved toward better solutions. Each 

candidate solution has a set of properties (its chromosomes or 

genotype) which can be mutated and altered; traditionally, 

solutions are represented in binary as strings of 0s and 1s, but 

other encodings are also possible. 

The evolution usually starts from a population of randomly 

generated individuals and is an iterative process, with the 

population in each iteration called a generation. In each 

generation, the fitness of every individual in the population is 

evaluated; the fitness is usually the value of the objective 

function in the optimization problem being solved. The more 

fit individuals are stochastically selected from the current 

population, and each individual's genome is modified 

(recombined and possibly randomly mutated) to form a new 

generation. The new generation of candidate solutions is then 

used in the next iteration of the algorithm. Commonly, the 

algorithm terminates when either a maximum number of 

generations has been produced, or a satisfactory fitness level 

has been reached for the population. 

A typical genetic algorithm requires: 

1. a genetic representation of the solution domain, 

2. a fitness function to evaluate the solution domain. 

A standard representation of each candidate solution is as 

an array of bits. Arrays of other types and structures can be 

used in essentially the same way. The main property that 

makes these genetic representations convenient is that their 

parts are easily aligned due to their fixed size, which facilitates 

simple crossover operations. Variable length representations 

may also be used, but crossover implementation is more 

complex in this case. Tree-like representations are explored in 

genetic programming and graph-form representations are 

explored in evolutionary programming; a mix of both linear 

chromosomes and trees is explored in gene expression 

programming. 

Once the genetic representation and the fitness function are 

defined, a GA proceeds to initialize a population of solutions 

and then to improve it through repetitive application of the 

mutation, crossover, inversion and selection operators. 

Initialization 

Initially many individual solutions are (usually) randomly 

generated to form an initial population. The population size 

depends on the nature of the problem, but typically contains 

several hundreds or thousands of possible solutions. 

Traditionally, the population is generated randomly, allowing 

the entire range of possible solutions (the search space). 

Occasionally, the solutions may be "seeded" in areas where 

optimal solutions are likely to be found. 

 

Selection 

During each successive generation, a proportion of the 

existing population is selected to breed a new generation. 

Individual solutions are selected through a fitness-based 

process, where fitter solutions (as measured by a fitness 

function) are typically more likely to be selected. Certain 

selection methods rate the fitness of each solution and 

preferentially select the best solutions. Other methods rate only 

a random sample of the population, as the former process may 

be very time-consuming. 

The fitness function is defined over the genetic 

representation and measures the quality of the represented 

solution. The fitness function is always problem dependent. 

For instance, in the knapsack problem one wants to maximize 

the total value of objects that can be put in a knapsack of some 

fixed capacity. A representation of a solution might be an array 

of bits, where each bit represents a different object, and the 

value of the bit (0 or 1) represents whether or not the object is 

in the knapsack. Not every such representation is valid, as the 

size of objects may exceed the capacity of the knapsack. The 

fitness of the solution is the sum of values of all objects in the 

knapsack if the representation is valid, or 0 otherwise. 

http://www.ijctjournal.org/


International Journal of Computer Techniques -– Volume 9 Issue 1, Jan-Feb 2022 
 

ISSN: 2394-2231                                                        http://www.ijctjournal.org                      Page 4 
 

In some problems, it is hard or even impossible to define 

the fitness expression; in these cases, a simulation may be used 

to determine the fitness function value of a phenotype (e.g. 

computational fluid dynamics is used to determine the air 

resistance of a vehicle whose shape is encoded as the 

phenotype), or even interactive genetic algorithms are used. 

 

Genetic operators 

For each new solution to be produced, a pair of "parent" 

solutions is selected for breeding from the pool selected 

previously. By producing a "child" solution using the above 

methods of crossover and mutation, a new solution is created 

which typically shares many of the characteristics of its 

"parents". New parents are selected for each new child, and the 

process continues until a new population of solutions of 

appropriate size is generated. Although reproduction methods 

that are based on the use of two parents are more "biology 

inspired", some research suggests that more than two "parents" 

generate higher quality chromosomes. 

These processes ultimately result in the next generation 

population of chromosomes that is different from the initial 

generation. Generally the average fitness will have increased 

by this procedure for the population, since only the best 

organisms from the first generation are selected for breeding, 

along with a small proportion of less fit solutions, for reasons 

already mentioned above. 

It is worth tuning parameters such as the mutation 

probability, crossover probability and population size to find 

reasonable settings for the problem class being worked on. A 

very small mutation rate may lead to genetic drift . A 

recombination rate that is too high may lead to premature 

convergence of the genetic algorithm. A mutation rate that is 

too high may lead to loss of good solutions unless there is 

elitist selection. There are theoretical but not yet practical 

upper and lower bounds for these parameters that can help 

guide selection. 

Termination 

This generational process is repeated until a termination 

condition has been reached. Common terminating conditions 

are: 

• A solution is found that satisfies minimum criteria 

• Fixed number of generations reached 

• Allocated budget (computation time/money) reached 

• The highest ranking solution's fitness is reaching or 

has reached a plateau such that successive iterations no longer 

produce better results 

• Manual inspection 

• Combinations of the above 

B.    New Genetic Algorithm for Cloud Resource Provisioning 

Initial Sequence -Here we generate n chromosomes randomly. 

Here We generate 4 sequences 

 

 
Selection process-in this process we generate 2n sequences. for 

that we first copy n sequences from initial sequences and 

generate n remaining sequences as randomly select two 

sequences from initial sequences and select sequence with best 

fitness value. Repeat this n times then we get 2n sequences 

 

Generate 8 Sequences by copying above 4 and Generate other 

4 as follows 

Generate two random number r1, r2 if rank of r1 < r2 select r1 

otherwise select r2, this is based on another random number r3 

whose value <.75. 

 

For example r1=4 and r2=3 then select r2 because rank of r2 < 

r1 and set as sequence 5  

 
 

Cross Over- here we generate 2n sequences by copying first n 

sequences from selection sequences. Remaining n sequences is 

generated as follows: 

 

Randomly select two sequences from selection sequences and a 

new sequence is generated by combining genes from these 

selected sequences. 

 

Copy first 4 sequence from cloning, next 4 sequences are 

generated as. Select  three random numbers r1,r2,r3. New 

sequence are generated from r1 ,r2 by copying first r3 elements 

of r1 and balance job- r3 elements from r2 starting from r3 

For example in the case of sequence 7,  r1=7, r2=3 , r3=5 ,. 

Copy first 5 elements of sequence 7 in Table2  and last two 

elements  of sequence 3. 

 

http://www.ijctjournal.org/


International Journal of Computer Techniques -– Volume 9 Issue 1, Jan-Feb 2022 
 

ISSN: 2394-2231                                                        http://www.ijctjournal.org                      Page 5 
 

 
 

 

mutation- here we generate 2n sequences by copying first n 

sequences from Cross over sequences. Remaining n sequences 

is generated as randomly select a sequence from above and 

perform some changes in sequence 

copy first 4 sequnece, next 4 sequnce generated by r1,r2, r3. 

Select r1 sequnce, interchange r2 & r3 elements of r1 

For example in the case of sequence 8,  r1=3, r2=3 , r3=4  

 
 

Select Best  

Sort these 8 sequences on rank base , select first 4 sequences 

with min weight 

 

 
 

How Weight Calculated 

Consider Following Allocation 

 

 
 

Waiting Time Of Job 9: 6 

Here highest waiting time 7 ( job 10) 

PW ( Percentage of waiting time )= Sum( waiting time for 

each job) /(heighst waiting time * num of jobs) 

idle time of p4=1, Highest idle time=4 ( p3) 

PI ( Percentage of idle time )= Sum( idle time for each node) 

/(heighst idle * num of nodes) 

Suppose p3 is considered as costly node with 10 Rs/ sec , But 

Job j2 is  allocated to p4 ( have 5 Rs/Sec) and joblength=4 sec, 

Income= 4*5=20. Suppose this job run in p3 , 

income=4*10=40 . So profit lose=40-20=20 

Max Benefit is obtained when all jobs are allocated to p3 

PP ( percentage of profit )=Sum(profit lose of each node) 

/(Maximum benefit * num nodes) 

 

Similarly p1 is considered as low cost node ( 1Rs/ sec), But 

job j2 allocated to p4 ( 5Rs/Sec ) and job length=4 , So 

cost=4*5=20. But it is run on p1 then cost=4*1=4 . So 

increase in cost= 20-4=16. Min Consumer cost obtained when 

all jobs executed on p1 

PC ( percentage of cost )=Sum(increase in cost for each job) 

/(Maximum benefit * num jobs) 

 

Rank= PC + PP + PW + PI. 

 

IV. PERFORMANCE EVALUATION 

Developed a  java based genetic algorithm. we got a 

scheduling details within 0.5 micro seconds for following 

inputs. 

 
 

From above data it is  clear that this algorithm does not badly 

affect performance of brokering mechanism in cloud. after a no 

of rounds of various inputs we can realize that  as no: of rounds 

increases we got better scheduling data. i.e Scheduling job with 

minimum waiting time, Consumer cost, provider idle time and 

maximum provider benefit.  These results are shown in 

following table. 

http://www.ijctjournal.org/


International Journal of Computer Techniques -– Volume 9 Issue 1, Jan-Feb 2022 
 

ISSN: 2394-2231                                                        http://www.ijctjournal.org                      Page 6 
 

 
 

This performance diagram is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Energy consumption versus number of packets 

 

 
Fig. 3.Average Residual Energy versus time of transmission. 

 

 

Performance diagram for different parameters against Number of iteration 

V.CONCLUSION 

In existing cloud system job allocation does not consider 

consumer preferences like waiting time and cost.  But  our 

proposed NGA  algorithm provides better negotiation between 

consumer and provider. this algorithm help us to provide an 

efficient resource provisioning with  minimum waiting time, 

Consumer cost, provider idle time and maximum provider 

benefit. this scheduling algorithm does not delay scheduling. 

now we are not considering task classification and resource 

classification. this will be considered in our future work. 

  

 In IAAS, user submit a task to cloud. cloud perform 

this task. several cloud provides same services. user can select 

any of these clouds. these selection is based on criteria such as 

1.waiting time 2.cost. At the same time  provider attract 

consumer by reducing cost. For that provider use on demand 

pricing method. by using this method provider done more tasks 

per unit time. this will reduce provider idle time and increase 

profit. In the same time provider can reduce service cost due to 

high demand, but existing scheduling algorithm does not 

consider these factors. here we propose a new genetic 

algorithm based resource provisioning system with minimum 

waiting time, Consumer cost, provider idle time and maximum 

provider benefit. 

REFERENCES 

[1] Ze Li, Student Member, IEEE, and Haiying Shen, Member, 

IEEE.” A QoS-Oriented Distributed Routing Protocol for 

Hybrid Wireless Networks”. IEEE transactions on mobile 

computing, vol. 13, no. 3, March 2014  

 

http://www.ijctjournal.org/

