
 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 113

Edge Server Deployment Based on Reinforcement Learning in

Mobile Edge Computing
Zixiang Wang*, Jipeng Zhou**

*(Department of Computer Science, Jinan University, Guangzhou 510632, China

Email: 1263448722@qq.com)

**(Department of Computer Science, Jinan University, Guangzhou 510632, China

Email: jpzhoucn@sohu.com)

--************************----------------------------------

Abstract:

 Mobile Edge Computing (MEC) is to sink the resource of remote cloud computing center to the

edge network to provide users with better services. Distinct from cloud computing, mobile edge

computing is under the constraint of edge server computing resources, deployment location, wireless

transmission bandwidth and etc. Although there has been significant research in the field of mobile edge

computing, little attention has been given to understanding the placement of edge servers to optimize the

mobile edge computing network performance. In this paper, we propose a server deployment scheme

based on reinforcement learning. Firstly, we propose the MEC three-tier architecture, which takes the

latency of the base station as the optimization goal. Then, we formulate the edge server deployment

problem as a single-objective optimization problem, and propose the edge server deployment (Q-ESD)

algorithm in this paper based on the Q-Learning algorithm. Finally, experimental results show that our

approach outperforms several representative approaches in terms of access delay and workload balancing.

Keywords — Mobile edge computing, Reinforcement learning, Server deployment, Load balancing.

--************************----------------------------------

I. INTRODUCTION

With the development of IoT and 5G networks in

smart city environments, mobile communication

traffic has experienced explosive growth over the

past few years. Mobile intelligent devices have

become increasingly important as tools for

entertainment, learning, social networking, and

businesses for smarter living [1]. The explosive

growth of terminal equipment, such as various

sensors, smartwatches, cameras, poses new

challenges to the transmission capacity,

transmission rate, data distribution and processing

capability, and data security for the entire network.

The development of the application requirements of

the Internet of Everything has given birth to the

edge big data processing model, namely edge

computing model [2]. The European

Telecommunications Standards Institute (ETSI)

established a mobile edge computing specification

working group in 2014 and formally promoted the

standardization of mobile edge computing. The

basic idea is tantamount to migrate the cloud

computing platform from the core network to the

edge of the mobile access network to achieve

elastic utilization of computing and storage

RESEARCH ARTICLE OPEN ACCESS

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 114

resources [3][4]. Mobile edge computing is an

effective way to alleviate the long latency problem

of users and improve the current network

architecture. In mobile edge computing, computing

resources will sink to the user side with the

deployment of edge servers, which can process

user’s requests closer to the user. Such a network

architecture can bring two benefits: 1) For

downstream data, edge servers play the role of

cloud service providers, bringing computing

resources close to end-users, so that the latency of

service requests can be very low; 2) For upstream

data, it helps to relieve the network transmission

pressure on the core network [5]. In some high-

bandwidth, low-latency innovative services, such as

augmented reality [6], deep learning [7], smart city

[8], and other application scenarios, many scholars

have carried out realistic deployment analyses of

them.

At present, a lot of research focuses on access

delay and energy consumption of terminal devices.

Reference [9] studied the problem of placing a

limited number of edge servers and assigning users

to edge servers in a large-scale wireless

metropolitan area network to minimize the average

waiting time for migration tasks. Reference [10]

studied the placement of wireless APs in large-scale

wireless metropolitan area networks. They

considered placing micro-clouds in different

strategic locations to lower user access latency.

Then, by treating it as an integer linear

programming problem, a heuristic solution was

proposed. Reference [11] studied the problem of

minimizing the number of edge servers while

guaranteeing Quality of Service (QoS) constraints

(such as access delay) and gave the integer linear

programming formulation of the problem.

Reference [12] took the energy consumption of the

edge server as the sensing target, expressed the

problem as a multi-objective optimization problem,

and designed a particle swarm optimization

algorithm to find the optimal deployment scheme to

decrease the energy consumption of the edge

servers. The results showed that this method can

reduce energy consumption by more than 10% and

increase the utilization rate of computational

resources by more than 15%. Some scholars

consider the user's access delay and the load

balance of the edge server, and use traditional

optimization algorithms to solve it. Reference [13]

mainly studied the deployment of edge servers in

smart city mobile edge computing environments.

By placing servers at some base stations to reduce

the access latency of mobile users and balance the

workload of edge servers, they described the

problem as of constrained optimization problem

and employed mixed integer programming to find

the optimal edge server layout.

This paper mainly focuses on the deployment

of edge servers. In this section, we weaken the

relationship between mobile users and the base

stations they access and directly use the workload

of each base station to let mobile users participate

in the model. We design a logical three-tier network

architecture, which mainly includes the base station

layer, the edge server layer, the remote computing

center layer. The waiting time of the base stations is

considered as the optimization objective, and the

load balance of the edge server is considered when

allocating the base stations to the edge server. Then

the system model in this paper is combined with the

basic framework of reinforcement learning, and the

system states, actions and rewards are defined in

conjunction with the deployment of edge servers.

Finally, the Q-Learning Edge Server Deployment

(Q-ESD) algorithm based on reinforcement learning

is designed to solve it. Simulation results show that

the Q-ESD algorithm performs better than

optimization algorithms such as the k-means for

balancing server workload and reducing user access

delay. The structure of this paper is reproduced

below. The first section introduces the background

and related works. Section II present a formulaic

definition of the proposed model. Section III

transform the corresponding problem into an

optimization problem. In section Ⅳ we design the

optimization algorithm based on reinforcement

learning. For section V, numerical simulations of

different methods are carried out. The conclusions

of this article are located in Section VI.

II. SYSTEM MODEL

In mobile edge network, as shown in Fig1,

edge network is considered as a three-tier

architecture including cloud computing center level,

edge server level, and the base station level. The

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 115

edge network consists of a set of base stations ℬ =
{𝑏1, … , 𝑏𝑖, … , 𝑏𝑚} connected through the Internet

and a set of edge servers 𝒮 = {𝑠1, … , 𝑠𝑗 , … , 𝑠𝑘}

providing computing resources. We use an

undirected graph 𝐺(𝑉, 𝐸) to represent the

relationship between base stations and edge servers.

There are for two types of edges in the graph, the

edge of base station 𝑏𝑖 and base station

𝑏𝑜 ((𝑏𝑖, 𝑏𝑜) ∈ 𝐸) means that there is a one-hop

distance between 𝑏𝑖 and 𝑏𝑜, and the edge ((𝑏𝑖, 𝑠𝑗) ∈

𝐸) of base station 𝑏𝑖 and edge server 𝑠𝑗 means that

base station 𝑏𝑖 can communicate directly with edge

server 𝑠𝑗 through the edge (𝑏𝑖, 𝑠𝑗). We assume that

graph 𝐺 is connected, which means that all base

stations can be attached to each other through

communication links. In addition, each edge server

can directly access the remote cloud computing

center through the Core Network.

Base Station

Edge Server

Cloud Computing Center

Base Station
 Edge Server

User Equipment

User Equipment

Base Station

Fig1 Mobile Edge Network Architecture

In the edge network, mobile users will offload

computing tasks to the neighboring base station

through the wireless network. The base station

forwards the user request to the edge server for

processing. We define the user request received by

the base station 𝑏𝑖 (𝑏𝑖 ∈ 𝐵, 𝑖 = 1, . . . , 𝑚) as the

workload of 𝑏𝑖, which is represented by the symbol

𝑤𝑏𝑖
. Base stations are densely deployed intensively

in edge networks. When selecting base stations to

deploy edge servers, some base stations are selected

to co-deploy. This solution not only brings a higher

quality of service (QOS) to mobile users but also

reduces the costs of operators. Taking Fig1 as an

example, the workload of base station 𝑏𝑜 needs to

be forwarded to server 𝑠𝑗 by base station 𝑏𝑖 . We

assume that base station 𝑏𝑖 will allocate resources to

process data forwarding, the data to be forwarded

will not have a waiting delay at the base station

𝑏𝑖 .To simulate the network delay of the edge

network, 𝐷 ∈ ℝ𝑚×𝑚 is used to represent the delay

matrix of the edge network, where 𝐷𝑜,𝑖 represents

the delay from base station 𝑏𝑜 to base station 𝑏𝑖 ,

when 𝑖 = 𝑜, there is 𝐷𝑜,𝑖 = 0.

The purpose of the base station allocation

strategy in the edge network is to allocate base

stations to the adjacent edge server. After

determining the physical location of the edge server

𝑠𝑗 , the base station with the minimum network

delay with the edge server 𝑠𝑗 is assigned to 𝑠𝑗. Since

the edge server is deployed in coordination with the

base station in the physical location, the network

delay between the base station and 𝑠𝑗 can be

obtained by the delay matrix D. The specific

forwarding strategy is shown in Algorithm 1

Algorithm 1: Base Station Allocation Strategy

Input: Undirected graph 𝐺, base station number 𝑞

co-deployed by edge server 𝑠𝑗 , base station

set ℬ, Delay matrix 𝐷, The number of edge

servers 𝑘, the number of base stations 𝑚

Output: The set of base stations 𝐵𝑗 processed by

the edge server 𝑠𝑗

1. 𝐵𝑗 ← ∅, 𝑅 ← 𝑚/𝑘, 𝑖𝑛𝑑𝑒𝑥 ← −1, 𝑥𝑞 ← 1

2. For 𝑖 = 1 𝑡𝑜 𝑅 do

3. 𝑚𝑖𝑛𝐷𝑒𝑙𝑎𝑦 ← 𝐹𝑙𝑜𝑎𝑡.𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸

4. For 𝑣 = 1 𝑡𝑜 𝑚 do

5. If 𝐷𝑣,𝑞 < 𝑚𝑖𝑛𝐷𝑒𝑙𝑎𝑦

6. 𝑚𝑖𝑛𝐷𝑒𝑙𝑎𝑦 ← 𝐷𝑣,𝑞

7. 𝑖𝑛𝑑𝑒𝑥 ← 𝑣

8. End If

9. End For

10. 𝑦(𝑖𝑛𝑑𝑒𝑥, 𝑗) ← 1, 𝐵𝑗 ← 𝐵𝑗 ∪ 𝑏𝑖𝑛𝑑𝑒𝑥

11. For 𝑣 = 1 𝑡𝑜 𝑚 do

12. 𝐷𝑖𝑛𝑑𝑒𝑥,𝑣 ← 𝐹𝑙𝑜𝑎𝑡.𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸

13. End For

14. End For

15. return 𝐵𝑗

In the algorithm 1, 𝑥𝑞 is a binary variable, and

𝑥𝑞=1 indicates that an edge server is deployed at the

base station 𝑏𝑞. Let 𝐵𝑗 = {𝑏𝑖|𝑦(𝑖, 𝑗) = 1} denote the

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 116

set of base stations that forward user requests to

edge server 𝑠𝑗 , where 𝑦(𝑖, 𝑗) is a binary variable,

and 𝑦(𝑖, 𝑗) = 1 means base station 𝑏𝑖 forwards user

requests to edge server 𝑠𝑗 for processing, otherwise

𝑦(𝑖, 𝑗) = 0. Algorithm 1 balances the workload of

edge servers by limiting the number of base stations

allocated to edge server. When base stations

allocated to the edge server 𝑠𝑗 exceed the average

number of base stations that each edge server

should be responsible for in the edge network, no

more base stations are allocated to the edge server

𝑠𝑗 . Lines 11 to 13 of the algorithm to avoid

secondary allocation of base stations to edge server.

III. PROBLEM FORMULATION

A. Computation Model

In the edge network, the edge server we deploy

have the same computing resources, assuming that

the maximum processing power of the edge server

CPU is 𝑓. In Fig1, if the base station 𝑏𝑖 is assigned

to the edge server 𝑠𝑗 , the calculation delay of the

request received by the base station is expressed as

𝑇𝑗
𝑐𝑎𝑙 =

𝑤𝑏𝑖

𝑓
 (1)

In the edge network, base stations are densely

deployed around mobile users. Typically assigning

multiple base stations to the nearby edge server. It

is assumed that the task processing of the edge

server is regarded as a queuing system. According

to the queuing theory, we assume that the average

arrival rate of task requests is 𝜆𝑗 , the average

service rate is 𝜇𝑗, and the service density is 𝜌𝑗. The

queuing delay of the task at the edge server 𝑠𝑗 is

expressed as

𝑇𝑗
𝑞𝑢𝑒𝑢𝑒

=
𝜌𝑗

1 − 𝜌𝑗

1

𝜇𝑗
 (2)

Therefore, for the set of base stations 𝐵𝑗 assigned

to the edge server 𝑠𝑗 , the delay in processing the

workload of the base stations in 𝐵𝑗 is expressed as

𝑇𝑗 = ∑ (𝐷𝑖,𝑗 +
𝑤𝑏𝑖

𝑓
+

𝜌𝑗

1 − 𝜌𝑗

1

𝜇𝑗
)

𝑏𝑖∈𝐵𝑗

 (3)

The total delay of all base stations in the edge

network is defined as

𝑇 = ∑𝑇𝑗

𝑘

𝑗=1

 (4)

B. Optimization Objective and Problem Description

We introduce two sets of variables 𝑋 and 𝑈 to

represent the location where edge servers are co-

deployed and the assignment relationship between

base stations and edge servers. The values of the

two sets of variables can be obtained according to

the allocation strategy. 𝑋 = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑚}且𝑈 =
{𝐵𝑗|1 ≤ 𝑗 ≤ 𝑘}. We denote the workload set of base

stations by 𝑊= {𝑤𝑏𝑖
|𝑏𝑖 ∈ ℬ}.

The edge server deployment problem in the

mobile edge network 𝐺 = (𝑉, 𝐸) is defined as

follows. Given the edge network 𝐺 and system

model parameters 𝐷 , 𝑊 , 𝜆 , 𝜇 , 𝑘 , 𝑚 ,find 𝑋 (the

location where the edge servers are co-deployed at

the base station) and 𝑈 (the assignment relationship

between base stations and edge servers) to

minimize base stations waiting time T in the edge

network:

min
𝑋,𝑈

𝑇
(5)

IV. DEPLOYMENT ALGORITHM BASED

ON Q-LEARNING

A. Reinforcement learning related concepts

Based on the Q-Learning algorithm, the Q-ESD

algorithm is proposed according to the

characteristics of the server deployment problem.

This section mainly describes the relevant

definitions of reinforcement learning applied to

edge server deployment algorithm, and defines the

state, action, and reward required by the

deployment algorithm.

State: Before defining the system state, the state-

space is presented. The state-space can be

represented by a matrix 𝑆𝑡𝑎𝑡𝑒 , which has 𝑘 rows

and 𝑚 columns. Each state is commensurate with a

row of the matrix. In the edge server deployment

problem, the system state refers to the position of

an edge server determined at a certain moment, that

is, a row of the 𝑆𝑡𝑎𝑡𝑒 matrix is determined. Each

state can be represented by a vector 𝑠𝑡𝑎𝑡𝑒𝑗 =

[𝑐𝑗,1, … , 𝑐𝑗,𝑖, … 𝑐𝑗,𝑚] , 𝑐𝑗,𝑖 in the vector is a binary

variable, which represents whether the edge server

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 117

𝑠𝑗 is deployed at the base station 𝑏𝑖, 𝑐𝑗,𝑖 = 1 means

that the edge server 𝑠𝑗 is deployed in cooperation

with the base station 𝑏𝑖 , otherwise 𝑐𝑗,𝑖 = 0. In the

edge server deployment problem, the edge server 𝑠𝑗

can only be deployed with one base station, so there

are the following constraints for 𝑠𝑡𝑎𝑡𝑒𝑗

∑𝑐𝑗,𝑖

𝑚

𝑖=1

= 1 (6)

 Update a row of the matrix, where 𝑐𝑗,𝑖 = 1. It is

understood that the edge server 𝑠𝑗 represented by

row 𝑗 and the base station 𝑏𝑖 represented by column

𝑖 are co-deployed. Updating the matrix represents a

complete deployment scheme. The state-space is

expressed as

𝑆𝑡𝑎𝑡𝑒 =

[

𝑠𝑡𝑎𝑡𝑒1

𝑠𝑡𝑎𝑡𝑒2

⋯
𝑠𝑡𝑎𝑡𝑒𝑗

⋯
𝑠𝑡𝑎𝑡𝑒𝑘]

=

[

𝑐1,1 𝑐1,2 ⋯ 𝑐1,𝑚

𝑐2,1 𝑐2,2 ⋯ 𝑐2,𝑚

⋯ ⋯ ⋯ ⋯
𝑐𝑗,1 𝑐𝑗,2 ⋯ 𝑐𝑗,𝑚
⋯ ⋯ ⋯ ⋯
𝑐𝑘,1 𝑐𝑘,2 ⋯ 𝑐𝑘,𝑚]

 (7)

Action: In the edge server deployment problem,

the action consists of two parts, determining the

deployment location of the server 𝑠𝑗; assigning base

stations to 𝑠𝑗 according to the base station allocation

strategy. The action vector is expressed as 𝑎𝑗 =

(𝑠𝑡𝑎𝑡𝑒𝑗 , 𝐵𝑗). The action-space is expressed as

𝐴 =

[

𝑎1

𝑎2

⋯
𝑎𝑗

⋯
𝑎𝑘]

 (8)

Reward: In the edge server deployment problem,

performing an action adjustment is to determine the

location of an edge server 𝑠𝑗 and the base stations

set 𝐵𝑗 allocated to the edge server 𝑠𝑗. From formula

(3), it can be known that the time delay for the edge

server 𝑠𝑗 to process the request in the set 𝐵𝑗 is 𝑇𝑗.

In reinforcement learning model, the agent's goal

is tantamount to maximize long-term cumulative

rewards. The optimization goal of the edge server

deployment problem proposed in this paper is to

minimize the total delay of the edge network. We

set the reward of the action to be a function

representation that is negatively related to the delay.

The reward function can be expressed as

𝑟𝑒𝑤𝑎𝑟𝑑𝑗 = 𝑒−𝑇𝑗 (9)

Evaluation Function: The evaluation function in

the Q-Learning algorithm includes immediate

reward value, Q-value function, and discount rate.

The Q-value table saves the estimated value of each

state-action pair (𝑠𝑡𝑎𝑡𝑒, 𝑎) [14]. According to the

given policy ℎ(𝑥), the evaluation function of the Q-

Learning algorithm is expressed as

(10)

In the formula: 𝛼 ∈ (0,1) is the learning rate;

𝛾 ∈ (0,1) is the discount rate, which determines

how much weight the agent considers future

rewards; 𝑡 is the time step; the reward is the

immediate reward when taking the current
(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑎𝑡) ; the 𝑚𝑎𝑥 function indicates that the

algorithm will evaluate (𝑠𝑡𝑎𝑡𝑒′, 𝑎′) according to

the maximum value of the predicted value in the

next (𝑠𝑡𝑎𝑡𝑒′, 𝑎′) ; in the formula, 𝑟𝑒𝑤𝑎𝑟𝑑 +
𝛾𝑚𝑎𝑥𝑄𝑡(𝑠𝑡𝑎𝑡𝑒′, 𝑎′) − 𝑄𝑡(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑎𝑡) is defined as

the time difference error (TD error) [15].

B. Edge Server Deployment Algorithm Design

Based on the Q-Learning algorithm, combined

with the MEC edge server deployment scenario, the

time slot is added to the model. The design points

of the q-learning edge server deployment(Q-ESD)

algorithm proposed in this paper are as following:

(1) In time slot 𝑡 , in the state-space 𝑆𝑡𝑎𝑡𝑒𝑡 =
{𝑠𝑡𝑎𝑡𝑒1

𝑡 , … , 𝑠𝑡𝑎𝑡𝑒𝑗
𝑡 … , 𝑠𝑡𝑎𝑡𝑒𝑘

𝑡} , each state

means the deployment of an edge server in slot

𝑡.

(2) In time slot 𝑡 , the action-space 𝐴𝑡 =
{𝑎1

𝑡 , … , 𝑎𝑗
𝑡, … , 𝑎𝑘

𝑡 }, each action corresponds to

an edge server deployment and the allocation

relationship between base stations and server in

slot 𝑡.

(3) A 𝑘 × 𝑚 Q-table matrix is established, all Q-

values are initialized to 0. The 𝑗th row and the

𝑖th column of the matrix represent the Q-value

of the edge server 𝑠𝑗 deployed at the base

station 𝑏𝑖.

(4) Under the current state 𝑠𝑡𝑎𝑡𝑒𝑡, find the action

with the largest Q-value in the action-space and

update the state to 𝑠𝑡𝑎𝑡𝑒𝑡+1.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 118

(5) Calculate the immediate reward 𝑟𝑒𝑤𝑎𝑟𝑑𝑡

according to the formula (9).

(6) Calculate the Q-value according to formula (10)

and update it.

(7) Iterate multiple times until the number of

iterations is 𝑁

The pseudocode of Algorithm 2 is as follows:

Algorithm2:
𝑄 − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝑆𝑒𝑟𝑣𝑒𝑟 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡(𝑄 − 𝐸𝑆𝑃)

Input: 𝐺, 𝐷, 𝑊, ℬ, 𝑘, 𝑚, 𝜀, α, γ, 𝑁

Output: 𝑄-𝑡𝑎𝑏𝑙𝑒, 𝑋, 𝑈

1. For episode 𝑖 = 1 𝑡𝑜 𝑁 do

2. randomly select a state 𝑠𝑡𝑎𝑡𝑒1

3. For slot 𝑡 = 1 𝑡𝑜 𝑘 do

4. generate 𝑝 at random

5. If 𝑝 ≤ 𝜀

6. randomly select an action 𝑎𝑡

7. Else

8. select action 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡𝑄(𝑠𝑡𝑎𝑡𝑒𝑡 , 𝑎𝑡)

9. End if

10. execute action 𝑎𝑡, obtain reward

𝑟𝑒𝑤𝑎𝑟𝑑𝑡(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑎𝑡) according to equation (9),

observe the next state 𝑠𝑡𝑎𝑡𝑒𝑡+1

11. calculate 𝑄-value and update in 𝑄-table

according to equation (10)

12. End for

13. End for

V. SIMULATION RESULTS

In reality, the edge network topology is difficult

to obtain. With the increase of access terminals and

APs, the edge network is constantly expanding and

growing, and new nodes tend to be connected to

more connected nodes when they join. For example,

the topology of the Internet follows a power-law

distribution [16]. Referring to this feature, we use a

scale-free network model to simulate the topology

of the edge network. In simulation experiments, we

utilize the Barabasi-Albert model [17] to generate

random scale-free networks as edge networks.

The experimental scene in this paper simulates a

square area of 2000m×2000m.We set up 50 base

stations deployed in the area to receive user

requests. The communication range of each base

station is 200m, and the topology structure between

base stations is generated by the Barabasi-Albert

model. The task data that each base station needs to

calculate is 200~500MB, and the number of CPU

cycles required to process 1 bit is 1000 cycles. We

will select 𝑘 (1 ≤ 𝑘 ≤ 10) base station locations to

co-deploy edge servers to process requests. The

service range of each edge server is 500m. In each

experiment, the average arrival rate 𝜆𝑗 of the edge

server is determined by the normal distribution

𝜆𝑗~𝑁（0.2, 0.5）, the average is 0.2, the variance

is 0.5 and 0≤𝜆𝑗≤0.4, the average service rate of

the edge server is 0.5, and the processing capacity

of the edge server is 𝑓 =10GHz/s. In addition, the

learning rate of Q-learning is 𝛼 = 0.8, the empirical

reward discount factor is 𝛾 = 0.1, the number of

iterations is set to 𝑁 = 1000, and the 𝜀 in the 𝜀 −
𝑔𝑟𝑒𝑒𝑑𝑦 algorithm is set to 𝜀 = 0.01.

To construct the network delay matrix 𝐷 ∈
ℝ𝑚×𝑚, we set a weighted value for each link in the

edge network topology graph 𝐺 , which represents

the delay between the two base stations connected

by this link. The weight of each edge is randomly

generated according to the normal distribution, with

an average value of 0.2 and a variance of 0.1, the

restricted value range is between 0.1 and 0.4. We

use Dijkstra algorithm to calculate the delay 𝐷𝑖,𝑗

between base stations 𝑏𝑖 and 𝑏𝑗 in graph 𝐺.

To evaluate the specific performance of the Q-

ESD algorithm proposed in the paper, this section

builds a simulation experiment environment on

MATLAB R2017b. Taking the waiting time of the

system in the edge network as an indicator, the

comparison algorithms include the deployment

algorithm based on the maximum load, the

deployment algorithm based on K-means clustering,

the random deployment algorithm. The detailed

description of the comparison algorithm is as

following:

(1) Top-K. The algorithm is to place 𝐾 edge

servers at the top-K base stations in front of the

workload.

(2) K-means. This approach is a commonly used

classical clustering algorithm, and its purpose

is to automatically divide a dataset into K

clusters. We use the K-means algorithm to

separate all base stations into K clusters, and

then deploy 𝑘 edge servers at the centroids of

these K clusters to reduce the system delay of

the edge network.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 119

(3) Random. The algorithm randomly selects K

base stations to deploy edge servers.

A. Impact of the Number of Servers

In this experiment, we mainly study the impact of

the numbers of edge servers 𝑘 on the performance

of the edge server in terms of the access delay. We

performed experiments using 50 base stations by

varying 𝑘 from 1 to 10. The experimental results of

the four deployment algorithms on the total system

delay with the increase of edge servers are shown in

Fig2.

Fig2 shows that with the increase of the number

of edge servers, the total delay of the edge network

will gradually decrease and become flat. Because,

as the number of edge server increases, each base

station has the opportunity to forward user requests

to closer edge servers, the total latency of the base

station tends to decrease. Regardless of the number

of edge servers, the performance of the random

algorithm is the worst, and the total latency of the

Q-ESD deployment algorithm is less than that of

the other three algorithms. In the Q-ESD algorithm

proposed in this paper, each iteration is a complete

deployment scheme, and the Q value of each server

deployment is recorded. During 1000 iterations, the

deployment plan is continuously adjusted according

to the total delay of the edge network after

deployment. Compared with K-means and Random,

Q-ESP reduces the system delay by 15.9% and 19.1%

on average.

Fig2 Total Delay with Different Number of Servers

When the number of edge server does not exceed

3, the Top-K algorithm performs better than the K-

means. Because the Top-K algorithm deploys the

edge server at the 𝑘 base stations with the highest

load, it can serve as many user requests as possible,

which can quickly alleviate the delay caused by

insufficient computing resources. When the number

of edge servers exceeds 3, the performance of the

K-means algorithm is better than the Top-K. Since

the K-means algorithm is deployed more evenly,

the number of network hops between the base

station and the target edge server is reduced. The

Top-K algorithm needs to connect the remote base

station to the server after multiple forwarding, so

the transmission time is higher.

When the number of edge servers exceeds 8, the

performance of all four algorithms tends to be flat.

When there are more than 8 edge servers, in a

square area of 2000m × 2000m, the computing of

edge servers can meet the need of the current edge

network.

At this time, requests from the base station can

be quickly forwarded to the nearest edge server,

fewer base stations are allocated to the edge server,

and the server can process base station requests

promptly, so the total system delay tends to be flat.

If you continue to increase the number of edge

servers, it will not greatly improve the QoS of users

but will increase the cost of operators.

B. Impact of the Base Stations Load

In this experiment, we mainly consider the

performance of different deployment algorithms

when the base station load changes. We choose 8

edge servers, and use set W to record the base

station load of this scene. We consider expanding

the load of all base stations to 1.1, 1.2, 1.3, 1.4, and

1.5 times the load in the set W. The total system

delay comparison of the four algorithms is

presented in Fig3.

Fig3 Total Delay with Different Workload of Base Stations

As the load of the base station increases, the

workload of the edge server also increases

accordingly, and the total system delay of the four

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 120

algorithms shows an upward trend. The

performance of the Q-ESD algorithm is the best. It

can be seen that the performance of the K-means

algorithm and the Q-ESD algorithm is significantly

improved compared to the Random algorithm and

the Top-K algorithm. The K-means algorithm

ensures that the base station is closer to the edge

server to some extent. The Q-ESD algorithm

improves its deployment performance through

multiple iterations and interaction with the

environment. It considers both the calculation delay

and the transmission delay between base stations,

so the Q-ESD algorithm has the best performance.

At the same time, we found that with the increase

of base station load, the total delay of the system

increases faster and faster. When the load just

begins to increase, the edge server can still roughly

satisfy the computing request of the base station. As

the load of the base station continues to grow, a

awaiting queue will gradually be generated at the

edge server, and the length of the waiting queue

will increase rapidly as the load increases, so the

total system delay will increase faster and faster.

C. Performance of Q-ESP Algorithm

This experiment mainly uses the reward value in

the framework of reinforcement learning to

evaluate the performance of our proposed Q-ESD

algorithm. We choose 8 edge servers in the

experiment. According to Fig2, 8 edge servers can

reduce the total delay of the entire edge network

and will not waste the computing power of edge

servers. The performance of the Q-SEP algorithm is

shown in Fig4.

Fig4 Episode Reward with Number of Iterations

With a learning rate α = 0.8 and an empirical

reward discount factor γ = 0.1, as the number of

iterations increases, the reward obtained by the Q-

ESD algorithm in each iteration cycle oscillates

around 250 × 10−5. In the first 160 iterations, the

system rewards did not increase significantly,

indicating that the algorithm is still in an

exploratory state. From the 160th to the 420th

iteration period, the system returns showed a clear

upward trend. After 420 iterations, the system

return value fluctuated around 250 × 10−5, and the

Q-ESP algorithm gradually stabilized.

VI. CONLUSION

Edge computing is an important emerging

technology that can be used to extend the

computation and storage capabilities by offloading

processing workload from the cloud in order to

reduce mobile edge computing network latency on

mobile devices. In this study, we propose a three-

layer network model consisting of data center, edge

servers, and base stations, and the edge servers have

computing capabilities and can provide computing

services for base stations. Therefore, an edge server

deployment optimization problem is considered. To

get a solution that minimizes the total delay of the

system, we use a reinforcement learning algorithm

to solve it. Firstly, we define the key elements of

the algorithm according to the framework of

reinforcement learning: state, action, and reward.

Then, the designed solution algorithm is composed

of two sub-algorithms. When the location of each

edge server is selected, Q-ESP algorithm is utilized

to solve it. After determining the location of an

edge server, we determine the base station assigned

to the edge server according to the delay matrix.

Finally, we performed experiments to evaluate the

performance of the proposed approach, and we

compare the results with classical algorithm. The

experimental results demonstrate that our proposed

algorithm outperforms several representative

approaches in terms of the access delay in edge

network.

REFERENCES
[1] Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., & Flinck, H. (2017).

Mobile edge computing potential in making cities smarter. IEEE

Communications Magazine, 55(3), 38-43.

[2] Fan, J., Wang, Z., Xie, Y., & Yang, Z. (2020, July). A theoretical
analysis of deep Q-learning. In Learning for Dynamics and

Control (pp. 486-489). PMLR.

[3] Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V.
(2015). Mobile edge computing—A key technology towards

5G. ETSI white paper, 11(11), 1-16.

http://www.ijctjournal.org/

 International Journal of Computer Techniques -– Volume 9 Issue 2, Mar 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 121

[4] Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2017). Mobile

edge computing: A survey. IEEE Internet of Things Journal, 5(1),

450-465.

[5] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge

computing: Vision and challenges. IEEE internet of things
journal, 3(5), 637-646.

[6] Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., &

Satyanarayanan, M. (2014, June). Towards wearable cognitive
assistance. In Proceedings of the 12th annual international

conference on Mobile systems, applications, and services (pp. 68-

81).
[7] Li, D., Salonidis, T., Desai, N. V., & Chuah, M. C. (2016,

October). Deepcham: Collaborative edge-mediated adaptive deep

learning for mobile object recognition. In 2016 IEEE/ACM
Symposium on Edge Computing (SEC) (pp. 64-76). IEEE.

[8] Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., & Yang, Q.

(2015). A hierarchical distributed fog computing architecture for
big data analysis in smart cities. In Proceedings of the ASE

BigData & SocialInformatics 2015 (pp. 1-6).

[9] Jia, M., Cao, J., & Liang, W. (2015). Optimal cloudlet placement
and user to cloudlet allocation in wireless metropolitan area

networks. IEEE Transactions on Cloud Computing, 5(4), 725-737.

[10] Xu, Z., Liang, W., Xu, W., Jia, M., & Guo, S. (2015). Efficient
algorithms for capacitated cloudlet placements. IEEE Transactions

on Parallel and Distributed Systems, 27(10), 2866-2880.

[11] Ren, Y., Zeng, F., Li, W., & Meng, L. (2018, July). A low-cost
edge server placement strategy in wireless metropolitan area

networks. In 2018 27th International Conference on Computer

Communication and Networks (ICCCN) (pp. 1-6). IEEE.
[12] Li, Y., & Wang, S. (2018, July). An energy-aware edge server

placement algorithm in mobile edge computing. In 2018 IEEE

International Conference on Edge Computing (EDGE) (pp. 66-73).
IEEE.

[13] Wang, S., Zhao, Y., Xu, J., Yuan, J., & Hsu, C. H. (2019). Edge

server placement in mobile edge computing. Journal of Parallel
and Distributed Computing, 127, 160-168.

[14] Shah, S. M., & Borkar, V. S. (2018). Q-learning for Markov

decision processes with a satisfiability criterion. Systems &

Control Letters, 113, 45-51.

[15] Clifton, J., & Laber, E. (2020). Q-learning: theory and
applications. Annual Review of Statistics and Its Application, 7,

279-301.

[16] Albert, R., Jeong, H., & Barabási, A. L. (1999). Diameter of the
world-wide web. nature, 401(6749), 130-131.

[17] Barabási, A. L., & Albert, R. (1999). Emergence of scaling in

random networks. science, 286(5439), 509-512.

http://www.ijctjournal.org/

