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Abstract: 
 

 

            Mobile Edge Computing (MEC) is to sink the resource of remote cloud computing center to the 

edge network to provide users with better services. Distinct from cloud computing, mobile edge 

computing is under the constraint of edge server computing resources, deployment location, wireless 

transmission bandwidth and etc. Although there has been significant research in the field of mobile edge 

computing, little attention has been given to understanding the placement of edge servers to optimize the 

mobile edge computing network performance. In this paper, we propose a server deployment scheme 

based on reinforcement learning. Firstly, we propose the MEC three-tier architecture, which takes the 

latency of the base station as the optimization goal. Then, we formulate the edge server deployment 

problem as a single-objective optimization problem, and propose the edge server deployment (Q-ESD) 

algorithm in this paper based on the Q-Learning algorithm. Finally, experimental results show that our 

approach outperforms several representative approaches in terms of access delay and workload balancing. 
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I.     INTRODUCTION 

With the development of IoT and 5G networks in 

smart city environments, mobile communication 

traffic has experienced explosive growth over the 

past few years. Mobile intelligent devices have 

become increasingly important as tools for 

entertainment, learning, social networking, and 

businesses for smarter living [1]. The explosive 

growth of terminal equipment, such as various 

sensors, smartwatches, cameras, poses new 

challenges to the transmission capacity, 

transmission rate, data distribution and processing 

capability, and data security for the entire network. 

The development of the application requirements of 

the Internet of Everything has given birth to the 

edge big data processing model, namely edge 

computing model [2]. The European 

Telecommunications Standards Institute (ETSI) 

established a mobile edge computing specification 

working group in 2014 and formally promoted the 

standardization of mobile edge computing. The 

basic idea is tantamount to migrate the cloud 

computing platform from the core network to the 

edge of the mobile access network to achieve 

elastic utilization of computing and storage 
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resources [3][4]. Mobile edge computing is an 

effective way to alleviate the long latency problem 

of users and improve the current network 

architecture. In mobile edge computing, computing 

resources will sink to the user side with the 

deployment of edge servers, which can process 

user’s requests closer to the user. Such a network 

architecture can bring two benefits: 1) For 

downstream data, edge servers play the role of 

cloud service providers, bringing computing 

resources close to end-users, so that the latency of 

service requests can be very low; 2) For upstream 

data, it helps to relieve the network transmission 

pressure on the core network [5]. In some high-

bandwidth, low-latency innovative services, such as 

augmented reality [6], deep learning [7], smart city 

[8], and other application scenarios, many scholars 

have carried out realistic deployment analyses of 

them. 

At present, a lot of research focuses on access 

delay and energy consumption of terminal devices. 

Reference [9] studied the problem of placing a 

limited number of edge servers and assigning users 

to edge servers in a large-scale wireless 

metropolitan area network to minimize the average 

waiting time for migration tasks. Reference [10] 

studied the placement of wireless APs in large-scale 

wireless metropolitan area networks. They 

considered placing micro-clouds in different 

strategic locations to lower user access latency. 

Then, by treating it as an integer linear 

programming problem, a heuristic solution was 

proposed. Reference [11] studied the problem of 

minimizing the number of edge servers while 

guaranteeing Quality of Service (QoS) constraints 

(such as access delay) and gave the integer linear 

programming formulation of the problem. 

Reference [12] took the energy consumption of the 

edge server as the sensing target, expressed the 

problem as a multi-objective optimization problem, 

and designed a particle swarm optimization 

algorithm to find the optimal deployment scheme to 

decrease the energy consumption of the edge 

servers. The results showed that this method can 

reduce energy consumption by more than 10% and 

increase the utilization rate of computational 

resources by more than 15%. Some scholars 

consider the user's access delay and the load 

balance of the edge server, and use traditional 

optimization algorithms to solve it. Reference [13] 

mainly studied the deployment of edge servers in 

smart city mobile edge computing environments. 

By placing servers at some base stations to reduce 

the access latency of mobile users and balance the 

workload of edge servers, they described the 

problem as of constrained optimization problem 

and employed mixed integer programming to find 

the optimal edge server layout. 

This paper mainly focuses on the deployment 

of edge servers. In this section, we weaken the 

relationship between mobile users and the base 

stations they access and directly use the workload 

of each base station to let mobile users participate 

in the model. We design a logical three-tier network 

architecture, which mainly includes the base station 

layer, the edge server layer, the remote computing 

center layer. The waiting time of the base stations is 

considered as the optimization objective, and the 

load balance of the edge server is considered when 

allocating the base stations to the edge server. Then 

the system model in this paper is combined with the 

basic framework of reinforcement learning, and the 

system states, actions and rewards are defined in 

conjunction with the deployment of edge servers. 

Finally, the Q-Learning Edge Server Deployment 

(Q-ESD) algorithm based on reinforcement learning 

is designed to solve it. Simulation results show that 

the Q-ESD algorithm performs better than 

optimization algorithms such as the k-means for 

balancing server workload and reducing user access 

delay. The structure of this paper is reproduced 

below. The first section introduces the background 

and related works. Section II present a formulaic 

definition of the proposed model. Section III 

transform the corresponding problem into an 

optimization problem. In section Ⅳ we design the 

optimization algorithm based on reinforcement 

learning. For section V, numerical simulations of 

different methods are carried out. The conclusions 

of this article are located in Section VI. 

II.     SYSTEM MODEL 

In mobile edge network, as shown in Fig1, 

edge network is considered as a three-tier 

architecture including cloud computing center level, 

edge server level, and the base station level. The 
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edge network consists of a set of base stations ℬ =
{𝑏1, … , 𝑏𝑖, … , 𝑏𝑚}  connected through the Internet 

and a set of edge servers 𝒮 = {𝑠1, … , 𝑠𝑗 , … , 𝑠𝑘} 

providing computing resources. We use an 

undirected graph 𝐺(𝑉, 𝐸)  to represent the 

relationship between base stations and edge servers. 

There are for two types of edges in the graph, the 

edge of base station 𝑏𝑖  and base station 

𝑏𝑜 ((𝑏𝑖, 𝑏𝑜) ∈ 𝐸) means that there is a one-hop 

distance between 𝑏𝑖 and 𝑏𝑜, and the edge ((𝑏𝑖, 𝑠𝑗) ∈

𝐸) of base station 𝑏𝑖 and edge server 𝑠𝑗 means that 

base station 𝑏𝑖 can communicate directly with edge 

server 𝑠𝑗 through the edge (𝑏𝑖, 𝑠𝑗). We assume that 

graph  𝐺  is connected, which means that all base 

stations can be attached to each other through 

communication links. In addition, each edge server 

can directly access the remote cloud computing 

center through the Core Network. 

Base Station

Edge Server

Cloud Computing Center

Base Station
 Edge Server

User Equipment

User Equipment

Base Station

 
Fig1 Mobile Edge Network Architecture 

In the edge network, mobile users will offload 

computing tasks to the neighboring base station 

through the wireless network. The base station 

forwards the user request to the edge server for 

processing. We define the user request received by 

the base station 𝑏𝑖  (𝑏𝑖 ∈ 𝐵, 𝑖 = 1, . . . , 𝑚) as the 

workload of 𝑏𝑖, which is represented by the symbol 

𝑤𝑏𝑖
. Base stations are densely deployed intensively 

in edge networks. When selecting base stations to 

deploy edge servers, some base stations are selected 

to co-deploy. This solution not only brings a higher 

quality of service (QOS) to mobile users but also 

reduces the costs of operators. Taking Fig1 as an 

example, the workload of base station 𝑏𝑜 needs to 

be forwarded to server 𝑠𝑗  by base station 𝑏𝑖 . We 

assume that base station 𝑏𝑖 will allocate resources to 

process data forwarding, the data to be forwarded 

will not have a waiting delay at the base station 

𝑏𝑖 .To simulate the network delay of the edge 

network, 𝐷 ∈ ℝ𝑚×𝑚 is used to represent the delay 

matrix of the edge network, where  𝐷𝑜,𝑖 represents 

the delay from base station 𝑏𝑜  to base station 𝑏𝑖 , 

when 𝑖 =  𝑜, there is 𝐷𝑜,𝑖 = 0. 

The purpose of the base station allocation 

strategy in the edge network is to allocate base 

stations to the adjacent edge server. After 

determining the physical location of the edge server 

𝑠𝑗 , the base station with the minimum network 

delay with the edge server 𝑠𝑗 is assigned to 𝑠𝑗. Since 

the edge server is deployed in coordination with the 

base station in the physical location, the network 

delay between the base station and 𝑠𝑗  can be 

obtained by the delay matrix D. The specific 

forwarding strategy is shown in Algorithm 1 

 

Algorithm 1: Base Station Allocation Strategy 

Input: Undirected graph 𝐺, base station number 𝑞 

co-deployed by edge server 𝑠𝑗 , base station 

set ℬ, Delay matrix 𝐷, The number of edge 

servers 𝑘, the number of base stations 𝑚 

Output: The set of base stations 𝐵𝑗  processed by 

the edge server 𝑠𝑗 

1. 𝐵𝑗 ← ∅, 𝑅 ← 𝑚/𝑘, 𝑖𝑛𝑑𝑒𝑥 ← −1, 𝑥𝑞 ← 1 

2. For 𝑖 =  1 𝑡𝑜 𝑅 do    

3.     𝑚𝑖𝑛𝐷𝑒𝑙𝑎𝑦 ←  𝐹𝑙𝑜𝑎𝑡.𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸 

4.     For 𝑣 =  1 𝑡𝑜 𝑚 do 

5.         If 𝐷𝑣,𝑞 < 𝑚𝑖𝑛𝐷𝑒𝑙𝑎𝑦  

6.             𝑚𝑖𝑛𝐷𝑒𝑙𝑎𝑦 ← 𝐷𝑣,𝑞  

7.             𝑖𝑛𝑑𝑒𝑥 ←  𝑣 

8.         End If 

9.     End For 

10.     𝑦(𝑖𝑛𝑑𝑒𝑥, 𝑗) ← 1, 𝐵𝑗 ← 𝐵𝑗 ∪ 𝑏𝑖𝑛𝑑𝑒𝑥 

11.     For 𝑣 =  1 𝑡𝑜 𝑚 do 

12.         𝐷𝑖𝑛𝑑𝑒𝑥,𝑣 ← 𝐹𝑙𝑜𝑎𝑡.𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸 

13.     End For 

14. End For 

15. return 𝐵𝑗 

In the algorithm 1, 𝑥𝑞  is a binary variable, and 

𝑥𝑞=1 indicates that an edge server is deployed at the 

base station 𝑏𝑞. Let 𝐵𝑗 = {𝑏𝑖|𝑦(𝑖, 𝑗) = 1} denote the 
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set of base stations that forward user requests to 

edge server 𝑠𝑗 , where 𝑦(𝑖, 𝑗)  is a binary variable, 

and 𝑦(𝑖, 𝑗) = 1 means base station 𝑏𝑖 forwards user 

requests to edge server 𝑠𝑗 for processing, otherwise 

𝑦(𝑖, 𝑗) = 0. Algorithm 1 balances the workload of 

edge servers by limiting the number of base stations 

allocated to edge server. When base stations 

allocated to the edge server 𝑠𝑗  exceed the average 

number of base stations that each edge server 

should be responsible for in the edge network, no 

more base stations are allocated to the edge server 

𝑠𝑗 . Lines 11 to 13 of the algorithm to avoid 

secondary allocation of base stations to edge server. 

III. PROBLEM FORMULATION 

A. Computation Model 

In the edge network, the edge server we deploy 

have the same computing resources, assuming that 

the maximum processing power of the edge server 

CPU is 𝑓. In Fig1, if the base station 𝑏𝑖 is assigned 

to the edge server 𝑠𝑗 , the calculation delay of the 

request received by the base station is expressed as  

𝑇𝑗
𝑐𝑎𝑙 =

𝑤𝑏𝑖

𝑓
 (1) 

In the edge network, base stations are densely 

deployed around mobile users. Typically assigning 

multiple base stations to the nearby edge server. It 

is assumed that the task processing of the edge 

server is regarded as a queuing system. According 

to the queuing theory, we assume that the average 

arrival rate of task requests is 𝜆𝑗 , the average 

service rate is 𝜇𝑗, and the service density is 𝜌𝑗. The 

queuing delay of the task at the edge server 𝑠𝑗  is 

expressed as 

𝑇𝑗
𝑞𝑢𝑒𝑢𝑒

=
𝜌𝑗

1 − 𝜌𝑗

1

𝜇𝑗
 (2) 

Therefore, for the set of base stations 𝐵𝑗 assigned 

to the edge server 𝑠𝑗 , the delay in processing the 

workload of the base stations in 𝐵𝑗 is expressed as 

𝑇𝑗 = ∑ (𝐷𝑖,𝑗 +
𝑤𝑏𝑖

𝑓
+

𝜌𝑗

1 − 𝜌𝑗

1

𝜇𝑗
)

𝑏𝑖∈𝐵𝑗

 (3) 

The total delay of all base stations in the edge 

network is defined as 

𝑇 = ∑𝑇𝑗

𝑘

𝑗=1

 (4) 

B. Optimization Objective and Problem Description 

We introduce two sets of variables 𝑋  and 𝑈  to 

represent the location where edge servers are co-

deployed and the assignment relationship between 

base stations and edge servers. The values of the 

two sets of variables can be obtained according to 

the allocation strategy. 𝑋 = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑚}且𝑈 =
{𝐵𝑗|1 ≤ 𝑗 ≤ 𝑘}. We denote the workload set of base 

stations by 𝑊= {𝑤𝑏𝑖
|𝑏𝑖 ∈ ℬ}.  

The edge server deployment problem in the 

mobile edge network 𝐺 = (𝑉, 𝐸)  is defined as 

follows. Given the edge network 𝐺  and system 

model parameters  𝐷 , 𝑊 , 𝜆 , 𝜇 , 𝑘 , 𝑚 ,find  𝑋 (the 

location where the edge servers are co-deployed at 

the base station) and 𝑈 (the assignment relationship 

between base stations and edge servers) to 

minimize base stations waiting time T in the edge 

network: 

min
𝑋,𝑈

𝑇 
(5) 

IV. DEPLOYMENT ALGORITHM BASED 

ON Q-LEARNING 

A. Reinforcement learning related concepts 

Based on the Q-Learning algorithm, the Q-ESD 

algorithm is proposed according to the 

characteristics of the server deployment problem. 

This section mainly describes the relevant 

definitions of reinforcement learning applied to 

edge server deployment algorithm, and defines the 

state, action, and reward required by the 

deployment algorithm. 

State: Before defining the system state, the state-

space is presented. The state-space can be 

represented by a matrix  𝑆𝑡𝑎𝑡𝑒 , which has  𝑘  rows 

and 𝑚 columns. Each state is commensurate with a 

row of the matrix. In the edge server deployment 

problem, the system state refers to the position of 

an edge server determined at a certain moment, that 

is, a row of the 𝑆𝑡𝑎𝑡𝑒 matrix is determined. Each 

state can be represented by a vector 𝑠𝑡𝑎𝑡𝑒𝑗 =

[𝑐𝑗,1, … , 𝑐𝑗,𝑖, … 𝑐𝑗,𝑚] , 𝑐𝑗,𝑖  in the vector is a binary 

variable, which represents whether the edge server 

http://www.ijctjournal.org/
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𝑠𝑗 is deployed at the base station 𝑏𝑖, 𝑐𝑗,𝑖 = 1 means 

that the edge server 𝑠𝑗  is deployed in cooperation 

with the base station 𝑏𝑖 , otherwise 𝑐𝑗,𝑖 = 0. In the 

edge server deployment problem, the edge server 𝑠𝑗 

can only be deployed with one base station, so there 

are the following constraints for 𝑠𝑡𝑎𝑡𝑒𝑗  

∑𝑐𝑗,𝑖

𝑚

𝑖=1

= 1 (6) 

  Update a row of the matrix, where 𝑐𝑗,𝑖 = 1. It is 

understood that the edge server 𝑠𝑗  represented by 

row 𝑗 and the base station 𝑏𝑖 represented by column 

𝑖 are co-deployed. Updating the matrix represents a 

complete deployment scheme. The state-space is 

expressed as 

𝑆𝑡𝑎𝑡𝑒 =

[
 
 
 
 
 
𝑠𝑡𝑎𝑡𝑒1

𝑠𝑡𝑎𝑡𝑒2

⋯
𝑠𝑡𝑎𝑡𝑒𝑗

⋯
𝑠𝑡𝑎𝑡𝑒𝑘]

 
 
 
 
 

=

[
 
 
 
 
 
𝑐1,1 𝑐1,2 ⋯ 𝑐1,𝑚

𝑐2,1 𝑐2,2 ⋯ 𝑐2,𝑚

⋯ ⋯ ⋯ ⋯
𝑐𝑗,1 𝑐𝑗,2 ⋯ 𝑐𝑗,𝑚
⋯ ⋯ ⋯ ⋯
𝑐𝑘,1 𝑐𝑘,2 ⋯ 𝑐𝑘,𝑚]

 
 
 
 
 

 (7) 

Action: In the edge server deployment problem, 

the action consists of two parts, determining the 

deployment location of the server 𝑠𝑗; assigning base 

stations to 𝑠𝑗 according to the base station allocation 

strategy. The action vector is expressed as 𝑎𝑗 =

(𝑠𝑡𝑎𝑡𝑒𝑗 , 𝐵𝑗). The action-space is expressed as 

𝐴 =

[
 
 
 
 
 
𝑎1

𝑎2

⋯
𝑎𝑗

⋯
𝑎𝑘]

 
 
 
 
 

 (8) 

Reward: In the edge server deployment problem, 

performing an action adjustment is to determine the 

location of an edge server 𝑠𝑗  and the base stations 

set 𝐵𝑗 allocated to the edge server 𝑠𝑗. From formula 

(3), it can be known that the time delay for the edge 

server 𝑠𝑗 to process the request in the set 𝐵𝑗 is 𝑇𝑗.  

In reinforcement learning model, the agent's goal 

is tantamount to maximize long-term cumulative 

rewards. The optimization goal of the edge server 

deployment problem proposed in this paper is to 

minimize the total delay of the edge network. We 

set the reward of the action to be a function 

representation that is negatively related to the delay. 

The reward function can be expressed as 

𝑟𝑒𝑤𝑎𝑟𝑑𝑗 = 𝑒−𝑇𝑗 (9) 

Evaluation Function: The evaluation function in 

the Q-Learning algorithm includes immediate 

reward value, Q-value function, and discount rate. 

The Q-value table saves the estimated value of each 

state-action pair (𝑠𝑡𝑎𝑡𝑒, 𝑎)  [14]. According to the 

given policy ℎ(𝑥), the evaluation function of the Q-

Learning algorithm is expressed as 

 

(10) 

In the formula: 𝛼 ∈ (0,1) is the learning rate; 

𝛾 ∈  (0,1) is the discount rate, which determines 

how much weight the agent considers future 

rewards;  𝑡  is the time step; the reward is the 

immediate reward when taking the current 
(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑎𝑡) ; the 𝑚𝑎𝑥  function indicates that the 

algorithm will evaluate (𝑠𝑡𝑎𝑡𝑒′, 𝑎′)  according to 

the maximum value of the predicted value in the 

next (𝑠𝑡𝑎𝑡𝑒′, 𝑎′) ; in the formula, 𝑟𝑒𝑤𝑎𝑟𝑑 +
𝛾𝑚𝑎𝑥𝑄𝑡(𝑠𝑡𝑎𝑡𝑒′, 𝑎′) − 𝑄𝑡(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑎𝑡) is defined as 

the time difference error (TD error) [15]. 

B. Edge Server Deployment Algorithm Design 

Based on the Q-Learning algorithm, combined 

with the MEC edge server deployment scenario, the 

time slot is added to the model. The design points 

of the q-learning edge server deployment(Q-ESD) 

algorithm proposed in this paper are as following: 

(1) In time slot 𝑡 , in the state-space 𝑆𝑡𝑎𝑡𝑒𝑡 =
{𝑠𝑡𝑎𝑡𝑒1

𝑡 , … , 𝑠𝑡𝑎𝑡𝑒𝑗
𝑡 … , 𝑠𝑡𝑎𝑡𝑒𝑘

𝑡} , each state 

means the deployment of an edge server in slot 

𝑡. 

(2) In time slot 𝑡 , the action-space 𝐴𝑡 =
{𝑎1

𝑡 , … , 𝑎𝑗
𝑡, … , 𝑎𝑘

𝑡 }, each action corresponds to 

an edge server deployment and the allocation 

relationship between base stations and server in 

slot 𝑡. 

(3) A 𝑘 × 𝑚  Q-table matrix is established, all Q-

values are initialized to 0. The 𝑗th row and the 

𝑖th column of the matrix represent the Q-value 

of the edge server 𝑠𝑗  deployed at the base 

station 𝑏𝑖. 

(4) Under the current state 𝑠𝑡𝑎𝑡𝑒𝑡, find the action 

with the largest Q-value in the action-space and 

update the state to 𝑠𝑡𝑎𝑡𝑒𝑡+1. 

http://www.ijctjournal.org/
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(5) Calculate the immediate reward 𝑟𝑒𝑤𝑎𝑟𝑑𝑡 

according to the formula (9). 

(6) Calculate the Q-value according to formula (10) 

and update it. 

(7) Iterate multiple times until the number of 

iterations is 𝑁 

The pseudocode of Algorithm 2 is as follows: 

Algorithm2: 
𝑄 − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝑆𝑒𝑟𝑣𝑒𝑟 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡(𝑄 − 𝐸𝑆𝑃) 

Input: 𝐺, 𝐷, 𝑊, ℬ, 𝑘, 𝑚, 𝜀, α, γ, 𝑁 

Output: 𝑄-𝑡𝑎𝑏𝑙𝑒, 𝑋, 𝑈  

1. For episode 𝑖 =  1 𝑡𝑜 𝑁 do    

2.     randomly select a state 𝑠𝑡𝑎𝑡𝑒1 

3.     For slot 𝑡 =  1 𝑡𝑜 𝑘 do     

4.         generate 𝑝 at random 

5.         If 𝑝 ≤  𝜀 

6.             randomly select an action 𝑎𝑡              

7.         Else 

8.             select action 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡𝑄(𝑠𝑡𝑎𝑡𝑒𝑡 , 𝑎𝑡) 

9.         End if 

10.         execute action 𝑎𝑡, obtain reward 

𝑟𝑒𝑤𝑎𝑟𝑑𝑡(𝑠𝑡𝑎𝑡𝑒𝑡, 𝑎𝑡) according to equation (9), 

observe the next state 𝑠𝑡𝑎𝑡𝑒𝑡+1 

11.         calculate 𝑄-value and update in 𝑄-table 

according to equation (10) 

12.     End for 

13. End for  

V.     SIMULATION RESULTS 

In reality, the edge network topology is difficult 

to obtain. With the increase of access terminals and 

APs, the edge network is constantly expanding and 

growing, and new nodes tend to be connected to 

more connected nodes when they join. For example, 

the topology of the Internet follows a power-law 

distribution [16]. Referring to this feature, we use a 

scale-free network model to simulate the topology 

of the edge network. In simulation experiments, we 

utilize the Barabasi-Albert model [17] to generate 

random scale-free networks as edge networks.  

The experimental scene in this paper simulates a 

square area of 2000m×2000m.We set up 50 base 

stations deployed in the area to receive user 

requests. The communication range of each base 

station is 200m, and the topology structure between 

base stations is generated by the Barabasi-Albert 

model. The task data that each base station needs to 

calculate is 200~500MB, and the number of CPU 

cycles required to process 1 bit is 1000 cycles. We 

will select 𝑘 (1 ≤ 𝑘 ≤ 10) base station locations to 

co-deploy edge servers to process requests. The 

service range of each edge server is 500m. In each 

experiment, the average arrival rate 𝜆𝑗  of the edge 

server is determined by the normal distribution 

𝜆𝑗~𝑁（0.2, 0.5）, the average is 0.2, the variance 

is 0.5 and 0≤𝜆𝑗≤0.4, the average service rate of 

the edge server is 0.5, and the processing capacity 

of the edge server is 𝑓 =10GHz/s. In addition, the 

learning rate of Q-learning is 𝛼 = 0.8, the empirical 

reward discount factor is 𝛾 = 0.1, the number of 

iterations is set to 𝑁 = 1000, and the 𝜀 in the 𝜀 −
𝑔𝑟𝑒𝑒𝑑𝑦 algorithm is set to 𝜀 = 0.01. 

To construct the network delay matrix 𝐷 ∈
ℝ𝑚×𝑚, we set a weighted value for each link in the 

edge network topology graph 𝐺 , which represents 

the delay between the two base stations connected 

by this link. The weight of each edge is randomly 

generated according to the normal distribution, with 

an average value of 0.2 and a variance of 0.1, the 

restricted value range is between 0.1 and 0.4. We 

use Dijkstra algorithm to calculate the delay 𝐷𝑖,𝑗 

between base stations 𝑏𝑖 and 𝑏𝑗 in graph 𝐺. 

To evaluate the specific performance of the Q-

ESD algorithm proposed in the paper, this section 

builds a simulation experiment environment on 

MATLAB R2017b. Taking the waiting time of the 

system in the edge network as an indicator, the 

comparison algorithms include the deployment 

algorithm based on the maximum load, the 

deployment algorithm based on K-means clustering, 

the random deployment algorithm. The detailed 

description of the comparison algorithm is as 

following: 

(1) Top-K. The algorithm is to place 𝐾  edge 

servers at the top-K base stations in front of the 

workload. 

(2) K-means. This approach is a commonly used 

classical clustering algorithm, and its purpose 

is to automatically divide a dataset into K 

clusters. We use the K-means algorithm to 

separate all base stations into K clusters, and 

then deploy 𝑘 edge servers at the centroids of 

these K clusters to reduce the system delay of 

the edge network. 
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(3) Random. The algorithm randomly selects K 

base stations to deploy edge servers. 

A. Impact of the Number of Servers 

In this experiment, we mainly study the impact of 

the numbers of edge servers 𝑘 on the performance 

of the edge server in terms of the access delay. We 

performed experiments using 50 base stations by 

varying 𝑘 from 1 to 10. The experimental results of 

the four deployment algorithms on the total system 

delay with the increase of edge servers are shown in 

Fig2. 

Fig2 shows that with the increase of the number 

of edge servers, the total delay of the edge network 

will gradually decrease and become flat. Because, 

as the number of edge server increases, each base 

station has the opportunity to forward user requests 

to closer edge servers, the total latency of the base 

station tends to decrease. Regardless of the number 

of edge servers, the performance of the random 

algorithm is the worst, and the total latency of the 

Q-ESD deployment algorithm is less than that of 

the other three algorithms. In the Q-ESD algorithm 

proposed in this paper, each iteration is a complete 

deployment scheme, and the Q value of each server 

deployment is recorded. During 1000 iterations, the 

deployment plan is continuously adjusted according 

to the total delay of the edge network after 

deployment. Compared with K-means and Random, 

Q-ESP reduces the system delay by 15.9% and 19.1% 

on average. 

 
Fig2 Total Delay with Different Number of Servers 

When the number of edge server does not exceed 

3, the Top-K algorithm performs better than the K-

means. Because the Top-K algorithm deploys the 

edge server at the 𝑘 base stations with the highest 

load, it can serve as many user requests as possible, 

which can quickly alleviate the delay caused by 

insufficient computing resources. When the number 

of edge servers exceeds 3, the performance of the 

K-means algorithm is better than the Top-K. Since 

the K-means algorithm is deployed more evenly, 

the number of network hops between the base 

station and the target edge server is reduced. The 

Top-K algorithm needs to connect the remote base 

station to the server after multiple forwarding, so 

the transmission time is higher. 

When the number of edge servers exceeds 8, the 

performance of all four algorithms tends to be flat. 

When there are more than 8 edge servers, in a 

square area of 2000m × 2000m, the computing of 

edge servers can meet the need of the current edge 

network. 

At this time, requests from the base station can 

be quickly forwarded to the nearest edge server, 

fewer base stations are allocated to the edge server, 

and the server can process base station requests 

promptly, so the total system delay tends to be flat. 

If you continue to increase the number of edge 

servers, it will not greatly improve the QoS of users 

but will increase the cost of operators. 

B. Impact of the Base Stations Load 

In this experiment, we mainly consider the 

performance of different deployment algorithms 

when the base station load changes. We choose 8 

edge servers, and use set W to record the base 

station load of this scene. We consider expanding 

the load of all base stations to 1.1, 1.2, 1.3, 1.4, and 

1.5 times the load in the set W. The total system 

delay comparison of the four algorithms is 

presented in Fig3. 

 
Fig3 Total Delay with Different Workload of Base Stations 

As the load of the base station increases, the 

workload of the edge server also increases 

accordingly, and the total system delay of the four 
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algorithms shows an upward trend. The 

performance of the Q-ESD algorithm is the best. It 

can be seen that the performance of the K-means 

algorithm and the Q-ESD algorithm is significantly 

improved compared to the Random algorithm and 

the Top-K algorithm. The K-means algorithm 

ensures that the base station is closer to the edge 

server to some extent. The Q-ESD algorithm 

improves its deployment performance through 

multiple iterations and interaction with the 

environment. It considers both the calculation delay 

and the transmission delay between base stations, 

so the Q-ESD algorithm has the best performance. 

At the same time, we found that with the increase 

of base station load, the total delay of the system 

increases faster and faster. When the load just 

begins to increase, the edge server can still roughly 

satisfy the computing request of the base station. As 

the load of the base station continues to grow, a 

awaiting queue will gradually be generated at the 

edge server, and the length of the waiting queue 

will increase rapidly as the load increases, so the 

total system delay will increase faster and faster. 

C. Performance of Q-ESP Algorithm 

This experiment mainly uses the reward value in 

the framework of reinforcement learning to 

evaluate the performance of our proposed Q-ESD 

algorithm. We choose 8 edge servers in the 

experiment. According to Fig2, 8 edge servers can 

reduce the total delay of the entire edge network 

and will not waste the computing power of edge 

servers. The performance of the Q-SEP algorithm is 

shown in Fig4. 

 
Fig4 Episode Reward with Number of Iterations 

With a learning rate α = 0.8  and an empirical 

reward discount factor γ = 0.1, as the number of 

iterations increases, the reward obtained by the Q-

ESD algorithm in each iteration cycle oscillates 

around 250 × 10−5. In the first 160 iterations, the 

system rewards did not increase significantly, 

indicating that the algorithm is still in an 

exploratory state. From the 160th to the 420th 

iteration period, the system returns showed a clear 

upward trend. After 420 iterations, the system 

return value fluctuated around 250 × 10−5, and the 

Q-ESP algorithm gradually stabilized. 

VI. CONLUSION 

Edge computing is an important emerging 

technology that can be used to extend the 

computation and storage capabilities by offloading 

processing workload from the cloud in order to 

reduce mobile edge computing network latency on 

mobile devices.  In this study, we propose a three-

layer network model consisting of data center, edge 

servers, and base stations, and the edge servers have 

computing capabilities and can provide computing 

services for base stations. Therefore, an edge server 

deployment optimization problem is considered. To 

get a solution that minimizes the total delay of the 

system, we use a reinforcement learning algorithm 

to solve it. Firstly, we define the key elements of 

the algorithm according to the framework of 

reinforcement learning: state, action, and reward. 

Then, the designed solution algorithm is composed 

of two sub-algorithms. When the location of each 

edge server is selected, Q-ESP algorithm is utilized 

to solve it. After determining the location of an 

edge server, we determine the base station assigned 

to the edge server according to the delay matrix. 

Finally, we performed experiments to evaluate the 

performance of the proposed approach, and we 

compare the results with classical algorithm. The 

experimental results demonstrate that our proposed 

algorithm outperforms several representative 

approaches in terms of the access delay in edge 

network. 
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