

 International Journal of Computer Techniques -– Volume 9 Issue 2, April 2022

IMPROVE WORKFLOW SCHEDULING TECHNIQUE USING SEMO IN CLOUD

COMPUTING

Ms. K.E. Eswari M.C.A., M.Phil., M.E., SET.,1, U. Naveenchandar2,

1Associate Professor, Department of Computer Applications, Nandha Engineering College

(Autonomous), Erode, Tamilnadu, India.

2Final MCA, Department of Computer Applications, Nandha Engineering College (Autonomous),

Erode, Tamilnadu, India.

Email: 1eswarisaravanan2001@gmail.com, 2naveen.chandar2018bsc@gmail.com

ISSN :2394-2231 http://www.ijctjournal.org Page 216

RESEARCH ARTICLE OPEN ACCESS

Abstract.In the cloud environment, the workflows have

been frequently used to model large-scale problems in

areas such as bioinformatics, astronomy, physics and

arithmetic process. Such a resource obtains a task from the

cloud providers that has ever-growing data and computing

requirements and therefore demand a high-performance

computing environment in order to be executed in a

reasonable amount of time. These workflows are

commonly modeled as a set of tasks interconnected via

data or computing dependencies.Cloud computing is the

latest distributed computing paradigm and it offers

tremendous opportunities to solve large-scale problems.

However, it presents various challenges that need to be

addressed in order to be efficiently utilized for workflow

applications. Although the workflow scheduling problem

has been widely studied, there are very few initiatives

tailored for cloud environments. Furthermore, the existing

works fail to either meet the user’s Quality of Service

(QoS) requirements or to incorporate some basic principles

of cloud computing such as the elasticity and heterogeneity

of the computing resources. This project proposes a

resource provisioning and scheduling strategy for scientific

workflows on Infrastructure as a Service (IaaS) and

Platform as services clouds (PaaS). This project presents an

algorithm based on the Superior Element Multitude

Optimization (SEMO), which aims to minimize the overall

workflow execution cost while meeting deadline

constraints. The main scope of the project is used to

analyze best available resource in the cloud environment

depend upon the total execution time and total execution

cost which is compare between one process to another

process. If the provider satisfies the time least time, then

the process becomes to termination.

Keywords: Cloud Computing, Resource Provisioning,

Particle Swarm Optimization.

I. INTRODUCTION

Cloud computing is internet- grounded computing

in which large groups of remote waiters are networked to

allow sharing of data-processing tasks, centralized data

storehouse, and online access to computer services or

coffers. Shadows can be classified as public, private or

mongrel. Cloud computing is a type of calculating that

relies on participating computing coffers rather than having

original waiters or particular bias to handle operations.

Virtualization is the main processing in Cloud

computing. Virtualization software allows aphysical

computing device to be electronically separated into one or

further"virtual" bias, each of which can befluently used and

managed to perform calculating tasks. Cloud computing

adopts generalities from Service acquainted Architecture

(SOA) that can help the stoner break these problems into

services that can be integrated to give a result.

Cloud computing provides all of its coffers as

services, and makes use of the well- established norms and

stylish practices gained in the sphere of SOA to allow

global and very easier access for cloud services in a

standardized way.Cloudcomputing is a kind of grid

computing; it has evolved by addressing the QoS (quality

of service) and trustability problems. Cloud computing

gives the tools as well as technologies to make data/ cipher

intensive parallel operations with affordable prices when

compared with traditional resemblant computing ways.

mailto:2naveen.chandar2018bsc@gmail.com
http://www.ijctjournal.org/

International Journal of Computer Techniques -– Volume 9 Issue 2, April 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 217

FIGURE 1.1 CLOUD COMPUTING

II. LITERATURE REVIEW

According to authors in this paper (1) load-

balancing problems arise in numerous operations, but, most

importantly, they play a special part in the operation of

resemblant and distributed calculating systems. load-

balancing deals with partitioning a program into lower

tasks that can be executed coincidently and mapping each

of these tasks to a computational resource such a processor

(e.g., in a multiprocessor system) or a computer (e.g., in a

computer network). By developing strategies that can

collude these tasks to processors in a way that balances out

the load, the total processing time will be reduced with

bettered processor application.

Utmost of the exploration on load- balancing

concentrated on static scripts that, in utmost of the cases,

employ heuristic styles. Still, inheritable algorithms have

gained immense fashionability over the last many times as

a robust and fluently adaptable hunt fashion. The work

proposed then investigates how a inheritable algorithm can

be employed to break the dynamic load- balancing

problem. A dynamic load- balancing algorithm is

developed whereby optimal or near-optimal task

allocations can ªevolveº during the operation of the

resemblant computing system.

The algorithm considers other load- balancing

issues similar as threshold programs, information exchange

criteria, andinter-processor communication. The goods of

these and other issues on the success of the inheritable-

grounded load- balancing algorithm as compared with the

first-fit heuristic are outlined.

Load-BALANCING algorithms are designed

basically to inversely spread the load on processors and

maximize their application while minimizing the total task

prosecution time (11), (12). In order to achieve these

pretensions, the load- balancing medium should be “ fair”

in distributing the load across the processors. This implies

that the difference between the heaviest- loaded and the

lightest- loaded processors should be minimized.

Thus, the load information on each processor must

be streamlined constantly so that the load- balancing

medium can be more effective. Also, the prosecution of the

dynamic load- balancing algorithm shouldn't take long to

arrive at a decision to make rapid-fire task assignments

(12). In general, load- balancing algorithms can be

astronomically distributed as centralized or decentralized,

dynamic or stationary, periodic ornon-periodic, and those

with thresholds or without thresholds (13).

In a centralized load- balancing algorithm, the

global load information is collected at a single processor,

called the central scheduler. This scheduler will make all

the load- balancing opinions grounded on the information

that's transferred from other processors. In decentralized

load-balancing, each processor in the system will broadcast

its load information to the rest of the processors so that

locally maintained load information tables can be

streamlined. As every processor in the system keeps track

of the global load information, load- balancing opinions

can be made on any processor.

A centralized algorithm can support a larger

system as it imposes smaller charges on the system than the

decentralized (distributed) algorithm. Still, a centralized

algorithm has lower trustability since the failure of the

central scheduler will affect in the dysfunction of the load-

balancing policy. Despite its capability to support lower

systems, a decentralized algorithm is still easier to apply.

Also, for stationary load-balancing problems, all

information governing load- balancing opinions is known

in advance. Tasks will be allocated during collect time

according to a priori knowledge and won't be affected by

the state of the system at the time. On the other hand, a

dynamic load- balancing medium has to allocate tasks to

the processors stoutly as they arrive. A near-optimal

schedule must be determined “ on the cover” similar that

the tasks listed can be completed in the shortest time

possible. As redivision of tasks has to take place during

runtime, dynamic load- balancing mechanisms are

generally harder to apply. Still, they tend have better

performance in comparison to stationary bones.

Moment, load sharing and task migration are some

of the extensively delved issues in dynamic load- balancing

http://www.ijctjournal.org/

International Journal of Computer Techniques -– Volume 9 Issue 2, April 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 218

algorithms (12). In a situation whereby recently created

tasks arrive aimlessly into the system, processors can come

heavily loaded while others are idle or smoothly loaded.

Thus, the main ideal of load sharing is to develop

task assignment algorithms to transfer or resettle tasks from

heavily to smoothly loaded processors so that no

processors are idle while there are other tasks staying to be

reused. In general, a dynamic load- balancing algorithm

consists of four major factors the load dimension rule, the

information exchange rule, the inauguration rule, and the

load- balancing operation (14).

The authors concluded that the proposed dynamic

load- balancing medium developed using inheritable

algorithms has been veritably effective, especially in the

case of a large number of tasks. In fact, a GA- grounded

scheme works more when the number of tasks is large and

where we observe harmonious performance while other

heuristics fail. The use of a central scheduler was also

effective as it can handle all load- balancing opinions with

minimuminter-processor communication. The threshold

policy used also handed better performance in comparison

to the first fit algorithm that doesn't have such a medium.

Therefore, the GA- grounded algorithm worked rather well

in terms of achieving the pretensions of minimal total

completion time and maximum processor application (15).

The authors in this paper (2) stated that Fair

queuing is a fashion that allows each inflow passing

through a network device to have a fair share of network

coffers. Former schemes for fair queuing that achieved

nearly perfect fairness were precious to apply specifically,

the work needed to reuse a packet in these schemes was O

(log (n)), where n is the number of active overflows. This is

precious at high pets. On the other hand, cheaper

approximations of fair queuing that have been reported in

the literature exhibition illegal geste. In this paper, the

authors described a new approximation of fair queuing, that

they called Deficit Round Robin. Their scheme achieves

nearly perfect fairness in terms of outturn, requires only O

(1) work to reuse a packet, and is simple enough to apply in

tackle. Deficiency Round Robin is also applicable to other

scheduling problems where servicing can not be broken up

into lower units, and to distributed ranges.

When there's contention for coffers, it's important

for coffers to be allocated or listed fairly. They need fire

walk between contending druggies, so that the “ fair”

allocation is followed rigorously. For illustration, in an

operating system, CPU scheduling of stoner processes

controls the use of CPU coffers by processes, and insulates

well- conducted druggies from ill- conducted druggies.

Unfortunately, in utmost computer net works there are no

similar firewalls; most networks are susceptible to poorly-

carrying sources. A guileful source that sends at an

unbridled rate can seize a large bit of the buffers at an

intermediate router; this can affect in dropped packets for

other sources transferring at further moderate rates! A

result to this problem is demanded to insulate the goods of

bad geste to druggies that are carrying poorly.

An insulation medium called Fair Queuing

(DKS89) has been proposed, and has been proved (GM90)

to have nearly perfect insulation and fairness.

Unfortunately, Fair Queuing (FQ) appears to be precious to

apply. Specifically, FQ requires O (log (n)) work per

packet to apply fair queuing, where n is the number of

packet aqueducts that are coincidently active at the gateway

or router. With a large number of active packet aqueducts,

FQ is hard to apply 1 at high pets. Some attempts have

been made to ameliorate the effectiveness of FQ; still

similar attempts either don't avoid the O (iog (n)) tailback

or are illegal.

In this paper they defined an insulation

mechanising that achieves nearly perfect fairness (in terms

of through put), and which takes O (1) processing work per

packet. Their scheme is simple (and thus affordable) to

apply at high pets at a router or gateway. Further they

handed logical results that don't depend on hypotheticals

about business distributions; we do so by furnishing worst-

case results across sequences of inputs. Similar amortized

(CLR90) and competitive (ST85) analyses have been a

major influence in the analysis of successional algorithms

because they finesse the need to make hypotheticals about

probability distributions of inputs.

They described a new scheme, Deficit Round

Robin (DRR), that provides near-perfect insulation at

veritably low perpetration cost. As far as we know, this is

the first fair queuing result that provides near-perfect

outturn fairness with O (1) packet processing. DRR should

be seductive to use while enforcing Fair Queuing at

gateways and routers.

They've described theorems that describe the geste

of DRR in backlogged business scripts. They've not fully

understood its geste in non – backlogged cases, though

they've conjectured that its outturn differs from the geste of

bit-by- bit round robin by at most a constant cumulative

factor.

Their simulations support this guess and indicate

that DRR works as well in non – backlogged cases. The

Quantum size needed for keeping the work O (1) is high (at

least equal to Maz). We feel that while Fair Queuing using

DRR is general enough for any kind of network, it's stylish

suited for datagram networks. In ATM networks, packets

are fixed size cells; thus Nagle’s result (simple round

http://www.ijctjournal.org/

International Journal of Computer Techniques -– Volume 9 Issue 2, April 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 219

robin) will work as well as DRR. Still, if connections in an

ATM network bear weighted fair queuing with arbitrary

weights, DRR will be useful.

DRR can be combined with other FQ algorithms

similar that DRR is used to service only the best- trouble

business. They described a trivial combination algorithm

called DRR that offers good quiescence bounds to

Quiescence Critical overflows as long as they meet their

contracts. Still, indeed if the source meets the contract, the

contract may be violated due to “ bunching” goods at

intermediate routers. Therefore other combinations need to

be delved. Recall that DRR requires having the amount

size be at least a maximum size packet in order for the

packet processing work to be low; this does affect

detention bounds.

They believed that DRR should be easy to apply

using being technology. It only requires a many

instructions beyond the simplest queuing algorithm

(FCFS), and this addition should be a small chance of the

instructions demanded for routing packets. The memory

requirements are also modest; 6K size memory should give

a small number of collisions for about 100 concurrent

overflows. This is a small quantum of redundant memory

compared to the buffer memory used in numerous routers.

Note that the buffer size conditions should be identical to

the softening for FCFS because in DRR buffers are

participated between ranges using McKenney’s buffer

stealing algorithm.

III. PROPOSED METHODOLOGY

The existing system develops a static cost-

minimization, deadline-constrained heuristic for scheduling

a workflow application in a cloud environment. The

approach considers fundamental features of IaaS providers

such as the dynamic provisioning and heterogeneity of

unlimited computing resources. To achieve this, both

resource provisioning and scheduling are merged and

modeled as an optimization problem. Particle Swarm

Optimization is then used to solve problem and then

produce a schedule defining not only the tasksfor resource

mapping, but also number of nodes to be utilized/assigned.

In the thesis the process referred in the single cloud

provider which is used to compute the consumption time

and execution cost for running the process in the

environment. The scheduling process is done in the basis of

set of resources, number of task which are defined to that

resource in the environment. The result of total

consumption cost and total execution time using PSO logic

are computed.

 Adaptable only in situations where same initial

set of resource availability.

 Suitable only where single cloud service provider

is available.

 Data transfer cost is not considered between

different cloud data centers.

The dissertation presented the algorithm named

SEMO (Superior Element Multitude Optimization) which

is compare the total execution time and total execution cost

between one processes to another process. In addition, it

extends the resource model to consider the data transfer

cost between data in cloud environment so that nodes can

be deployed on different regions.

Also, it assigns different options for the selection

of the initial resource pool. For example, for the given task,

the different set of initial resource requirements is assigned.

In addition, data transfer cost between data environment

are also calculated so as to minimize the cost of execution

in multi-cloud service provider environment.

In existing system, Dominant firefly behavior is

applied on cloud load balancing methods, which is termed

the dominant firefly algorithm. In a fireflies group, there

are several dominant fireflies with many submissive

fireflies. The method is being assumed that dominant

fireflies denote cloud servers and submissive fireflies

denote users. Whenever the cloud servers are filled with a

lot of load (i.e., user requests), this needs to be regularly

and equally balanced in such a manner that queries /

requests are migrated to some other cloud server for

completing the task.

Based on this firefly behavior, it is represented

that if dominant firefly is already occupied with many other

submissive fireflies during searching, then load is balanced

by utilizing/passing on excess submissive fireflies to next

available dominant firefly. According to this algorithm,

when Cloud user requests are increased to a particular

Cloud server, then users are automatically transferred to the

next (dominant) Cloud server. Also, the path of submissive

fireflies towards dominant firefly represents nearby cloud

servers which provide load balancing dynamicity.

Along with present system implementation,

deadline resource provisioning algorithm to execute Job is

also carried out. The dissertation presented the algorithm

which is named as SEMO (Superior Element Multitude

Optimization) and then compares total execution time total

execution cost mong various one processes. Moreover, it

extends the new resource model for considering the data

transfer cost among data in cloud environment so that

nodes are deployed on different regions. In addition, it

http://www.ijctjournal.org/

International Journal of Computer Techniques -– Volume 9 Issue 2, April 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 220

reassigns different options for selection of the initial

resource pools. For example, for the given new task,

different set of initial resource requirements are assigned.

Moreover, data transfer cost between data environment is

also calculated to reduce execution cost in multi-cloud

service provider environment.

FIGURE 3.1 PROCESS FLOW

IV. FINDINGS

1.It is seen that improvements in load balancing of tasks in

the Cloud computing environment is happened.

2. It is found that the load of job requests from Cloud end-

users submitted to CSVMs is optimally balanced to

increase the efficiency of the Cloud server.

3. An improvement in energy consumption among Cloud

servers is found out.

4.Enhancements in m-learning environments could be

made by finding many relational models to avoid the

highest energy consuming server throughout the world.

5. This work reveals many challenges in m-learning using

Cloud computing technologies.

6. It is seen that, there are many opportunities in the field

of m-learning, green computing, and in Cloud-based

organizations are available.

7. After applying the load balancing algorithm, response

time was drastically decreased, which improved the m-

learning system’s overall performance.

8. PSO algorithm helps to select the best resources among

the resource pools with the ownership of multiple cloud

providers.

9. Execution cost and time could be minimized to a greater

extent.

V. CONCLUSION

The thesis presented the SEMO(Superior Element

Multitude Optimization) algorithm which is used to

predict the least time computation in the cloud provider

area. In addition, the thesis compared the time evaluation

work between one dynamic resource flow to another

process flow of dynamic resource in the cloud

environment. In addition, it extends the resource model to

consider the data transfer cost between data centers so that

nodes can be deployed on different regions. Extending the

algorithm to include heuristics that ensure a task is

assigned to a node with sufficient memory to execute it

will be included in the algorithm. Also, it assigns different

options for the selection of the initial resource pool. For

example, for the given task, the different set of initial

resource requirements is assigned. In addition, data transfer

cost between data centers are also calculated so as to

minimize the cost of execution in multi-cloud service

provider environment.The main contribution of thesis, the

following problem solve in the existing system, they

contribution are, Adaptable in situations where multiple

initial set of resource availability.Suitable for multiple

cloud service provider environments.Data transfer cost is

reduced between different cloud data centers.

REFERENCES

[1] A. Y. Zomaya and Y.-H. Teh, ‘‘Observations on using

genetic algorithms for dynamic load-balancing,’’ IEEE

Trans. Parallel Distrib. Syst., vol. 12, no. 9, pp. 899–911,

Sep. 2001.

[2]

M.ShreedharandG.Varghese,‘‘Efficientfairqueuingusingde

ficitroundrobin,’’ IEEE/ACM Trans. Netw., vol. 4, no. 3,

pp. 375–385, Jun. 1996

 [3] D. Eyers, R. Routray, R. Zhang, D. Willcocks, and P.

Pietzuch, “Towards a middleware forconfiguring large-

scale storage infrastructures” ’in Proc. 7th Int. Workshop

Middleware Grids, Clouds e-Sci., 2009, p. 3.

[4]

C.Fehling,T.Ewald,F.Leymann,M.Pauly,J.Rütschlin,andD.

Schumm, ‘‘Capturing cloud computing knowledge and

experience in patterns,’’ in Proc. IEEE 5th Int. Conf. Cloud

Comput. (CLOUD), Jun. 2012, pp. 726–733.

[5] X.-S. Yang, ‘‘Firefly algorithms for multimodal

optimization,’’ in Proc. Int. Symp. Stochastic Algorithms.

Berlin, Germany: Springer, 2009, pp. 169–178.

Add Cloud

Provider/

Resource/Processe

s Add Task/Show

Task Graph

Show Execute

Time Matrix

Show Data

Transfer Time

Matrix

 Execute Schedule

Algorithm

Admin

http://www.ijctjournal.org/

International Journal of Computer Techniques -– Volume 9 Issue 2, April 2022

ISSN :2394-2231 http://www.ijctjournal.org Page 221

[6] L. D. D. Babu and P. V. Krishna, ‘‘Honey bee behavior

inspired load

balancingoftasksincloudcomputingenvironments,’’Appl.So

ftComput., vol. 13, no. 5, pp. 2292–2303, May 2013.

[7] B.Mondal,K.Dasgupta,andP.Dutta,

“LoadbalancinginCloudcomputing using stochastic hill

climbing-a soft computing approach,” Procedia Technol.,

vol. 4, pp. 783–789, Jun. 2012.

[8] T. R.Armstrong, D.Hensgen, The relative performance

of various mapping algorithms is independent of sizable

variances in runtime predictions, in: 7th IEEE

Heterogeneous Computing Workshop (HCW ’98), 1998,

pp. 79–87.

[9] A. Vouk, Cloud computing- issues, research and

implementations, in: Information Technology Interfaces,

2008, pp. 31–40.

[10] B.Wickremasinghe, R.N.Calheiros, R. Buyya,

Cloudanalyst: A cloudsim-based visual modeller for

analysing cloud computingenvironments and applications,

in: Proceedings of the 24th International Conference on

Advanced Information Networking and Applications

(AINA 2010), Perth, Australia,, 2010.

[11] S.H. Bokhari, “On the Mapping Problem,” IEEE

Trans. Computers, vol. 30, no. 3, pp. 550-557, Mar. 1981.

[12] S. Salleh and A.Y. Zomaya, Scheduling in Parallel

Computing Systems: Fuzzy and Annealing Techniques.

Kluwer Academic, 1999.

[13] F. Bonomi and A. Kumar, ªAdaptive Optimal Load-

Balancing in a Heterogeneous Multiserver System with a

Central Job Scheduler,º IEEE Trans. Computers, vol. 39,

no. 10, pp. 1232-1250, Oct. 1990.

[14] C. Xu and F. Lau, Load-Balancing in Parallel

Computers - Theory and Practice. Kluwer Academic, 1997.

[15] A.Y. Zomaya, F. Ercal, and S. Olariu, Solutions to

Parallel and Distributed Computing Problems: Lessons

from Biological Sciences. New York: Wiley, 2001.

[16] M. Armbrust, A. Fox, R. Griffith, et al. Above the

clouds: A berkeley view of cloud computing. Technical

Report UCB/EECS-2009-28, EECS Department,

University of California, Berkeley, Feb 2009.

[17] E. Anderson, S. Spence, R. Swaminathan, et al.

Quickly finding near-optimal storage designs. ACM

Transactions on Computer Systems, 23(4):337–374, 2005.

[18] P. Sarkar, R. Routray, E. Butler, et al. SPIKE: best

practice generation for storage area networks. In

SYSML’07: Proceedings of the 2nd USENIX workshop on

tackling computer systems problems with machine learning

techniques, pages 1–6, Berkeley, CA, USA, 2007.

USENIX Association.

[19] F. Chong, G. Carraro, “Architecture Strategies for

Catching the Long Tail”, Microsoft Whitepaper, 2006.

[20] J. Varia: “Cloud Architectures,” Technical Report,

Amazon, 2010.

[21] C. Fehling, F. Leymann, R. Retter, D. Schumm, W.

Schupeck, “An Architectural Pattern Language of Cloud-

based Applications,” Proceedings of the Conference on

Pattern Languages of Programs (PLoP), 2011.

[22] Bonabeau E., Dorigo M., Theraulaz G., Swarm

Intelligence: From Natural to Artificial Systems. Oxford

University Press, (1999)

[23] R.Buyya, C. Yeo, S.Venugopal, J.Broberg, I.Brandic,

Cloud computing and emerging it platforms: Vision, hype,

and reality for delivering computing as the 5th utility, in:

Future Generation Computer Systems, vo1.25, 2009, pp.

599–616.

http://www.ijctjournal.org/

